Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Forest stand decomposition of the Silesian Beskids which is followed by the tree cutting has been observed since the beginning of the 21st century. Changes in forest management due to the introduction of heavy machines for forest work mainly for skidding have been observed in the Silesian Beskids for the last decade. The paper presents results of a three-year investigation of erosion gullies forming in mountain forest after the skidding performed with use of heavy equipment. In the Wilczy Potok catchment comprising an area of above 100 ha 40 gullies were identified. The measurement of the length and depth of gullies showed that the total volume of soil and rock material removed from the catchment area due to erosion accelerated by skidding exceeded 9 000 m3. The year erosion rate for deep gullies was found to be 10%. The presented results show that necessary protective actions and preventive measures should be taken to mitigate the soil degradation processes.
Go to article

Abstract

To improve bioremediation of arsenic (As) contamination in soil, the use of microorganisms to efficiently reduce As and their assessment of genetic erosion by DNA damage using genomic template stability (GTS) evaluation and using RAPD markers were investigated. The five sites examined for microorganisms and contaminated soils were collected from affected gold mining areas. The highest As concentration in gold mining soil is 0.72 mg/kg. Microorganism strains isolated from the gold mining soil samples were tested for As removal capacity. Two bacterial isolates were identified by 16S rRNA gene sequence analysis and morphological characteristics as Brevibacillus reuszeri and Rhodococcus sp. The ability to treat As in nutrient agar (NA) at 1,600 mg/L and contaminated soil samples at 0.72 mg/kg was measured at 168 h, revealing more efficient As removal by B. reuszeri than Rhodococcus sp. (96.67% and 94.17%, respectively). Both species have the capacity to remove As, but B. reuszeri shows improved growth compared to the Rhodococcus sp. B. reuszeri might be suitable for adaptation and use in As treatment. The results are in agreement with their genetic erosion values, with B. reuszeri showing very little genetic erosion (12.46%) of culture in As concentrations as high as 1,600 mg/L, whereas 82.54% genetic erosion occurred in the Rhodococcus sp., suggesting that Rhodococcus sp. would not survive at this level of genetic erosion. Therefore, B. reuszeri has a high efficiency and can be used for soil As treatment, as it is capable to tolerate a concentration of 0.72 mg/kg and as high as 1,600 mg/L in NA.
Go to article

This page uses 'cookies'. Learn more