Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Multiple input multiple output (MIMO) is a multiple antenna technology used extensively in wireless communication systems. With the ever increasing demand in high data rates, MIMO system is the necessity of wireless communication. In MIMO wireless communication system, where the multiple antennas are placed on base station and mobile station, the major problem is the constant power of base station, which has to be allocated to data streams optimally. This problem is referred as a power allocation problem. In this research, singular value decomposition (SVD) is used to decouple the MIMO system in the presence of channel state information (CSI) at the base station and forms parallel channels between base station and mobile station. This practice parallel channel ensures the simultaneous transmission of parallel data streams between base station and mobile station. Along with this, water filling algorithm is used in this research to allocate power to each data stream optimally. Further the relationship between the channel capacity of MIMO wireless system and the number of antennas at the base station and the mobile station is derived mathematically. The performance comparison of channel capacity for MIMO systems, both in the presence and absence of CSI is done. Finally, the effect of channel correlation because of antennas at the base stations and the mobile stations in the MIMO systems is also measured.
Go to article

Abstract

The relationship between internal response-based reliability and conditionality is investigated for Gauss-Markov (GM) models with uncorrelated observations. The models with design matrices of full rank and of incomplete rank are taken into consideration. The formulas based on the Singular Value Decomposition (SVD) of the design matrix are derived which clearly indicate that the investigated concepts are independent of each other. The methods are presented of constructing for a given design matrix the matrices equivalent with respect to internal response-based reliability as well as the matrices equivalent with respect to conditionality. To analyze conditionality of GM models, in general being inconsistent systems, a substitute for condition number commonly used in numerical linear algebra is developed, called a pseudo-condition^number. Also on the basis of the SVD a formula for external reliability is proposed, being the 2-norm of a vector of parameter distortions induced by minimal detectable error in a particular observation. For systems with equal nonzero singular values of the design matrix, the formula can be expressed in terms of the index of internal response-based reliability and the pseudo-condition^number. With these measures appearing in explicit form, the formula shows, although only for the above specific systems, the character of the impact of internal response-based reliability and conditionality of the model upon its external reliability. Proofs for complementary properties concerning the pseudo-condition^number and the 2-norm of parameter distortions in systems with minimal constraints are given in the Appendices. Numerical examples are provided to illustrate the theory.
Go to article

This page uses 'cookies'. Learn more