Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:

Abstract

Similarity assessment between 3D models is an important problem in many fields including medicine, biology and industry. As there is no direct method to compare 3D geometries, different model representations (shape signatures) are developed to enable shape description, indexing and clustering. Even though some of those descriptors proved to achieve high classification precision, their application is often limited. In this work, a different approach to similarity assessment of 3D CAD models was presented. Instead of focusing on one specific shape signature, 45 easy-to-extract shape signatures were considered simultaneously. The vector of those features constituted an input for 3 machine learning algorithms: the random forest classifier, the support vector classifier and the fully connected neural network. The usefulness of the proposed approach was evaluated with a dataset consisting of over 1600 CAD models belonging to 9 separate classes. Different values of hyperparameters, as well as neural network configurations, were considered. Retrieval accuracy exceeding 99% was achieved on the test dataset.
Go to article

Abstract

This research presents comprehensive assessment of the precision castings quality made in the Replicast CS process. The evaluation was made based on quality of the surface layer, shape errors and the accuracy of the linear dimensions. Studies were carried out on the modern equipment, among other things a Zeiss Calypso measuring machine and profilometer were used. Obtained results allowed comparing lost wax process models and Replicast CS process.
Go to article

Abstract

The process of enrichment in a jig has usually been described and analysed using particle density as a separation feature. However, a degree of particle loosening in the jig bed is affected by, inter alia, the terminal particle free settling velocity which in turn is affected by the size, density and shape of a particle. Therefore, the terminal particle settling velocity clearly characterises the feed transferred to a jig for the enrichment process. Taking the comprehensive particle geometric (particle size and shape) and physical properties (particle density) into account comes down to the calculation of the terminal particle settling velocity. The terminal particle settling velocity is therefore a complex separation feature which comprises three basic particle features (particle density, size and shape). This paper compares the effects of enrichment of coal fines in a jig, for two cases: when the commonly applied particle density is separation feature and for the particle settling velocity. Particle settling velocities were calculated in the selected three particle size fractions: –3.15+2.00, –10.00+8.00 and –20.00+16.00 mm based on the industrial testing of a jig for coal fines and detailed laboratory tests consisting in determining particle density, projective diameter and volume and dynamic particle shape coefficient. The calculated and drawn partition curves for two variants, i.e. when particle density and particle settling velocity were taken into account as the separation argument in selected particle size fractions, allowed to calculate and compare separation precision indicator. With the use of a statistical test, the assumption on the independence of random variables of the distribution of components included in the distribution of the particle settling velocity as a separation feature during enrichment in a jig was verified.
Go to article

Abstract

In this paper an alternative procedure to vibro-acoustics study of beam-type structures is presented. With this procedure, it is possible to determine the resonant modes, the bending wave propagation velocity through the study of the radiated acoustic field and their temporal evolution in the frequency range selected. As regards the purely experimental aspect, it is worth noting that the exciter device is an actuator similar to is the one employed in distributed modes loudspeakers; the test signal used is a pseudo random sequence, in particular, an MLS (Maximum Length Sequence), facilitates post processing. The study case was applied to two beam-type structures made of a sandstone material called Bateig. The experimental results of the modal response and the bending propagation velocity are compared with well-established analytical solution: Euler-Bernoulli and Timoshenko models, and numerical models: Finite Element Method – FEM, showing a good agreement.
Go to article

Abstract

The processing of cartographic data demands human involvement. Up-to-date algorithms try to automate a part of this process. The goal is to obtain a digital model, or additional information about shape and topology of input geometric objects. A topological skeleton is one of the most important tools in the branch of science called shape analysis. It represents topological and geometrical characteristics of input data. Its plot depends on using algorithms such as medial axis, skeletonization, erosion, thinning, area collapse and many others. Area collapse, also known as dimension change, replaces input data with lower-dimensional geometric objects like, for example, a polygon with a polygonal chain, a line segment with a point. The goal of this paper is to introduce a new algorithm for the automatic calculation of polygonal chains representing a 2D polygon. The output is entirely contained within the area of the input polygon, and it has a linear plot without branches. The computational process is automatic and repeatable. The requirements of input data are discussed. The author analyzes results based on the method of computing ends of output polygonal chains. Additional methods to improve results are explored. The algorithm was tested on real-world cartographic data received from BDOT/GESUT databases, and on point clouds from laser scanning. An implementation for computing hatching of embankment is described.
Go to article

Abstract

Cu-Al-based high temperature shape memory alloys are preferred commonly due to their cheap costs and shape memory properties. In recent years, studies have been conducted on developing and producing a new type of Cu-Al based shape memory alloy. In this study, the CuAl-Cr alloy system, which has never been produced before, is investigated. After production, the SEMEDX measurements were made in order to determine the phases in the Cu84–xAl12Crx+4 (x = 0, 4, 6) (weight %) alloy system; and precipitate phases together with martensite phases were detected in the alloys. The confirmations of these phases were made via x-ray measurements. The same phases were observed by XRD diffractogram of the alloys as well. The values of transformation temperature of alloys were determined with Differential Scanning Calorimetry (DSC) at 20°C/min heating rate. According to the DSC results, the transformation temperature of the alloys varies between 320°C and 350°C. This reveals that the alloys show high temperature shape memory characteristics.
Go to article

Abstract

At the current stage of diagnostics and therapy, it is necessary to perform a geometric evaluation of facial skull bone structures basing upon virtually reconstructed objects or replicated objects with reverse engineering. The objective hereof is an analysis of imaging precision for cranial bone structures basing upon spiral tomography and in relation to the reference model with the use of laser scanning. Evaluated was the precision of skull reconstruction in 3D printing, and it was compared with the real object, topography model and reference model. The performed investigations allowed identifying the CT imaging accuracy for cranial bone structures the development of and 3D models as well as replicating its shape in printed models. The execution of the project permits one to determine the uncertainty of components in the following procedures: CT imaging, development of numerical models and 3D printing of objects, which allows one to determine the complex uncertainty in medical applications.
Go to article

Abstract

Shape memory alloys are characterised by interesting properties, i.e. shape memory effect and pseudoelasticity, which enable their increasing application. Thermomechanical aspects of martensitic and reverse transformations in TiNi shape memory alloy subjected to tension tests were investigated. The stress-strain characteristics obtained during the tests were completed by the temperature characteristics. The temperature changes were calculated on the basis of thermograms determined by an infrared camera. Taking advantages from the infrared technique, the temperature distributions on the specimen’s surface were found. Heterogeneous temperature distributions, related to the nucleation and development of the new martensite phase, were registered and analysed. A significant temperature increase, up to 30 K, was registered during the martensitic transformation. The similar effects of the heterogeneous temperature distribution were observed during unloading, while the reverse transformation, martensite into austenite took place, accompanied by significant temperature decrease.
Go to article

Abstract

Increasing demands on the utility properties of materials used for castings have led to the production of cast iron with a modified shape of graphite, where the required properties are achieved by a change in graphite shape, its size and layout, and a change in the basic structure of the metal. This paper is focused on the continuous method of producing spheroidal graphite FLOTRET. In the introductory section is summarized the theoretical foundations of the secondary treatment of cast irons, especially the FLOTRET flow method, describes the advantages and disadvantages of the method. The practical part is divided into laboratory and operational tests. Laboratory experiments were conducted on a laboratory-type modifier FLOTRET chamber, which was designed and hydraulically optimized. Experiments were focused on the effects of pressure altitude and amount of modifier on the residual values of magnesium, as conditions for a successful modification. The method was tested in two foundries under operating conditions and in one of them was observed a long-term modification process.
Go to article

Abstract

US A356 and US 413 cast aluminium alloys shrinkage characteristic have been discussed in the present study. Specific volume reduction leads to shrinkage in castings and it can be envisaged as a casting defect. Finite difference based casting process simulation software has been used to study the shrinkage characteristic and it is quantified using mathematical formulae. The three dimensional model of the shrinkage defect has been constructed using CAD application software. Shrinkage characteristic has also been quantified through experimental validation studies and compared well with casting process simulation. Shrinkage characteristic study and control is essential for producing defect free castings. Influence of casting shape on the shrinkage characteristic has been studied in this paper.
Go to article

Abstract

The paper presents the results of examination concerning optimization of the σ phase precipitates with respect to the functional properties of ferritic-austenitic cast steel. The examined material comprised two grades of corrosion-resistant cast steel, namely GX2CrNiMoN25-6-3 and GX2CrNiMoCuN25-6-3-3, used for example in elements of systems of wet flue gas desulphurisation in power industry. The operating conditions in media heated up to 70°C and containing Cl- and SO4 ions and solid particles produce high erosive and corrosive wear. The work proposes an application of the σ phase as a component of precipitation strengthening mechanism in order to increase the functional properties of the material. Morphology and quantities of σ phase precipitates were determined, as well as its influence on the erosion and corrosion wear resistance. It was shown that annealing at 800°C or 900°C significantly improves tribological properties as compared with the supersaturated state, and the best erosion and corrosion wear resistance achieved due to the ferrite decomposition δ → γ’ + σ was exhibited in the case of annealing at the temperature of 800°C for 3 hours.
Go to article

Abstract

The examined material comprised two grades of corrosion-resistant cast steel, namely GX2CrNiMoN25-6-3 and GX2CrNiMoCuN25-6-3- 3, used for example in elements of systems of wet flue gas desulphurisation in power industry. The operating conditions in media heated up to 70°C and containing Cl- and SO4 ions and solid particles produce high erosive and corrosive wear.The work proposes an application of the σ phase as a component of precipitation strengthening mechanism in order to increase the functional properties of the material. The paper presents the results of examination of the kinetics of σ phase precipitation at a temperature of 800°C and at times ranging from 30 to 180 minutes. Changes in the morphology of precipitates of the σ phase were determined using the value of shape factor R. Resistance to erosion-corrosion wear of duplex cast steel was correlated with the kinetics of sigma phase precipitating.
Go to article

Abstract

The Structural Peclet Number has been estimated experimentally by analyzing the morphology of the continuously cast brass ingots. It allowed to adapt a proper development of the Ivantsov’s series in order to formulate the Growth Law for the columnar structure formation in the brass ingots solidified in stationary condition. Simultaneously, the Thermal Peclet Number together with the Biot, Stefan, and Fourier Numbers is used in the model describing the heat transfer connected with the so-called contact layer (air gap between an ingot and crystallizer). It lead to define the shape and position of the s/l interface in the brass ingot subjected to the vertical continuous displacement within the crystallizer (in gravity). Particularly, a comparison of the shape of the simulated s/l interface at the axis of the continuously cast brass ingot with the real shape revealed at the ingot axis is delivered. Structural zones in the continuously cast brass ingot are revealed: FC – fine columnar grains, C – columnar grains, E – equiaxed grains, SC – single crystal situated axially.
Go to article

This page uses 'cookies'. Learn more