Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

In the paper a new method, called the Noise Scattering Pattern (NSP) method, for RTS noise identification in a noise signal is presented. Examples of patterns of the NSP method are included.
Go to article

Abstract

Ray tracing simulation of sound field in rooms is a common tool in room acoustic design for predicting impulse response. There are numerous commercial engineering tools utilising ray tracing simulation. A specific problem in the simulation is the modelling of diffuse reflections when contribution of individual surface is prevailing. The paper introduces modelling of scattering which is interesting when the whole impulse response of a room is not a goal but contribution of certain surface. The main goal of the project is to shape directivity characteristics of scattered reflection. Also, an innovative approach is suggested for converting the energy histogram information obtained by ray tracing into an “equivalent impulse response”. The proposed algorithm is tested by comparing the results with measurements in a real sound field, realised in a scaled model where a diffusing surface is hardware-implemented.
Go to article

Abstract

The scattering of plane steady-state sound waves from a viscous fluid-filled thin cylindrical shell weak- ened by a long linear slit and submerged in an ideal fluid is studied. For the description of vibrations of elastic objects the Kirchhoff-Love shell-theory approximation is used. An exact solution of this problem is obtained in the form of series with cylindrical harmonics. The numerical analysis is carried out for a steel shell filled with oil and immersed in seawater. The modules and phases of the scattering amplitudes versus the dimensionless wavenumber of the incident sound wave as well as directivity patterns of the scattered field are investigated taking into consideration the orientation of the slit on the elastic shell surface. The plots obtained show a considerable influence of the slit and viscous fluid filler on the diffraction process.
Go to article

Abstract

Mixed boundary-value problem for periodic baffles in acoustic medium is solved with help of the method developed earlier in electrostatics. The nice feature of the method is that the resulting matrices are relatively easy for computations and that the results satisfy exactly the energy conservation law. Illustrative numerical examples present the wave-beam steering (in the far-field) in a baffle system that may be considered as a model of one-dimensional ultrasonic transducer array.
Go to article

This page uses 'cookies'. Learn more