Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:

Abstract

The investigations carried out during the 5th Antarctic Expedition of the Polish Academy of Sciences allowed to collect the data concerning specificity of the dynamics of sea-salt nuclei dispersed in the Antarctica region. At the established measuring point measurements at three levels were carried out, basing on which the required profile of the wind characteristics at different heights a.s.l. were obtained.
Go to article

Abstract

The influence of the refractory coating which is a mixture of silica flour and kaolin on the surface roughness of the plate castings produced using evaporative patterns had been considered in this work. The kaolin was used as a binder and ratio method was employed to form basis for the factorial design of experiment which led to nine runs of experiments. Methyl alcohol at 99% concentration was used as the carrier for the transfer of the coating to the surface of the patterns. Pouring temperature was observed as a process parameter alongside the mix ratios of the coating. Attempts were made to characterize the refractory coating by using two methods; differential thermal analysis (DTA) and X-ray diffraction. Attempt was also made to characterize the casting material. Gating system design was done for the plate casting to determine the correct proportions of the gating parameters in order to construct the gating system properly to avoid turbulence during pouring of liquid metal. A digital profilometer was used to take the measurements of the surface roughness. It was observed that the mix ratio 90% silica flour-10% kaolin produced the lowest value of the surface roughness of the plate castings and had the lowest material loss in the DTA test. The pouring temperature of 650o C produced best casting.
Go to article

Abstract

The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating
Go to article

Abstract

The article presents an example of finishing treatment for aluminum alloys with the use of vibration machining, with loose abrasive media in a closed tumbler. For the analysis of selected properties of the surface layer prepared flat samples of aluminum alloy PA6/2017 in the state after recrystallization. The samples in the first stage were subjected to a treatment of deburring using ceramic media. In a second step polishing process performed with a strengthening metal media. In addition, for comparative purposes was considered. only the case of metal polishing. The prepared samples were subjected to hardness tests and a tangential tensile test. As a result of finishing with vibratory machining, it was possible to remove burrs, flash, rounding sharp edges, smoothing and lightening the surface of objects made. The basic parameters of the surface geometry were obtained using the Talysurf CCI Lite - Taylor Hobson optical profiler. As a result of the tests it can be stated that the greatest reduction of surface roughness and mass loss occurs in the first minutes of the process. Mechanical tests have shown that the most advantageous high values of tensile strength and hardness are obtained with two-stage vibration treatment, - combination of deburring and polishing. Moreover the use of metal media resulted in the strengthening of the surface by pressure deburring with metal media.
Go to article

Abstract

Glacially abraded basaltic rock surfaces found within a Little Ice Age (LIA) foreland of Skálafellsjökull (SE Iceland) were studied at eight sites of different age applying different weathering indices. They include surface micro−roughness parameters measured with the Handysurf E35−B electronic profilometer – a new tool in geomorphology, Schmidt hammer rebound (R−values) and weathering rind thickness. Values of these indices obtained from study sites exposed to subaerial weathering for more than ca. 80 years are significantly different than those from younger moraines closer to the glacier snout. Despite a wide scatter of readings within each study site, there is a significant correlation between the ages and the values of the indices. It is concluded that the micro−roughness parameters provided by the Handysurf E35−B profilometer, Schmidt hammer R−values and weathering rind thickness are robust indices of rock surface deterioration rate in short time−scales. There is mounting evidence that rock surface undergoes relatively rapid weathering during first decades since deglaciation.
Go to article

Abstract

In this paper, the basic cutting characteristics such as cutting forces, cutting power and its distribution, specific cutting energies were determined taking into account variable tool corner radius ranging from 400 to 1200 μm and constant cutting parameters typical for hard turning of a hardened 41Cr4 alloy steel of 55 ± 1 HRC hardness. Finish turning operations were performed using chamfered CBN tools. Moreover, selected roughness profiles produced for different tool corner radius were compared and appropriate surface roughness parameters were measured. The measured values of Ra and Rz roughness parameters are compared with their theoretical values and relevant material distribution curves and bearing parameters are presented.
Go to article

Abstract

In the present work, the performance of multilayer coated carbide tool was investigated considering the effect of cutting parameters during turning of 34CrMo4 Low alloy steel. It has high strength and creep strength, and good impact tenacity at low temperature. It can work at –110°C to 500°C. And EN 10083-1 34CrMo4 owns high static strength, impact tenacity, fatigue resistance, and hardenability; without overheating tendencies. The objective functions were selected in relation to the parameters of the cutting process: surface roughness criteria. The correlations between the cutting parameters and performance measures, like surface roughness, were established by multiple linear regression models. Highly significant parameters were determined by performing an Analysis of variance (ANOVA). During the experiments flank wear, cutting force and surface roughness value were measured throughout the tool life. The results have been compared with dry and wet-cooled turning. Analysis of variance factors of design and their interactions were studied for their significance. Finally, a model using multiple regression analysis between cutting speed, fee rate and depth of cut with the tool life was established.
Go to article

Abstract

The topic of incompressible fluid flow in rough channels is of practical interest in many diverse applications. It also forms the basis of our understanding of fluid-wall interactions, turbulent eddy generation, and their effect on the frictional pressure losses. Although this topic is also of fundamental interest, the work in this area is entirely guided by the experimental work of earlier investigators [1–6]. The works by Nikuradse [4] and Colebrook [5] constitute a major milestone from which useful empirical models are derived. As we approach the microscale, Nikuradse’s experimental work again is brought to focus, perhaps this time to gain an insight into the mechanisms affecting fluid-wall interaction in rough channels. In this paper, Nikuradse’s work is revisited in light of the recent experimental work on roughness effects in microscale flow geometries.
Go to article

Abstract

The development of industry is determined by the use of modern materials in the production of parts and equipment. In recent years, there has been a significant increase in the use of nickel-based superalloys in the aerospace, energy and space industries. Due to their properties, these alloys belong to the group of materials hard-to-machine with conventional methods. One of the non-conventional manufacturing technologies that allow the machining of geometrically complex parts from nickel-based superalloys is electrical discharge machining. The article presents the results of experimental investigations of the impact of EDM parameters on the surfaces roughness and the material removal rate. Based on the results of empirical research, mathematical models of the EDM process were developed, which allow for the selection of the most favourable processing parameters for the expected values of the surface roughness Sa and the material removal rate.
Go to article

Abstract

The work presents the results of the investigations of the effect of inhibitors coated on the internal walls of a ceramic mould on the quality of the obtained casts made of the AM60 alloy containing additions of chromium and vanadium. In order to reduce the reactivity of magnesium alloy cast by the technology of investment casting with the material of the mould and the ambient atmosphere, solid inhibitors were applied in the form of a mixture of KBF4 and H3BO3 after the stage of mould baking and before the mould’s being filled with the liquid alloy. For the purpose of examining the effect of the inhibitors on the surface quality of the obtained casts, profilometric tests were performed and the basic parameters describing the surface roughness, Ra, Rz and Rm, were determined.
Go to article

Abstract

Identification of coefficients determining flow resistance, in particular Manning’s roughness coefficients, is one of the possible inverse problems of mathematical modeling of flow distribution in looped river networks. The paper presents the solution of this problem for the lower Oder River network consisting of 78 branches connected by 62 nodes. Using results of six sets of flow measurements at particular network branches it was demonstrated that the application of iterative algorithm for roughness coefficients identification on the basis of the sensitivity-equation method leads to the explicit solution for all network branches, independent from initial values of identified coefficients.
Go to article

Abstract

The presented work is aimed to deal with the influence of changes in the value of negative (relative) pressure maintained in the die cavity of pressure die casting machine on the surface quality of pressure castings. The examinations were held by means of the modified Vertacast pressure die casting machine equipped with a vacuum system. Castings were produced for the parameters selected on the basis of previous experiments, i.e. for the plunger velocity in the second stage of injection at the level of 4 m/s, the pouring temperature of the alloy equal to 640°C, and the die temperature of 150°C. The examinations were carried on for three selected values of negative gauge pressure: - 0.03, - 0.05, and - 0.07 MPa. The quality of casting was evaluated by comparing the results of the surface roughness measurements performed for randomly selected castings. The surface roughness was measured by means of Hommel Tester T1000. After a series of measurements it was found that the smoothest surface is exhibited by castings produced at negative gauge pressure value of - 0.07 MPa.
Go to article

This page uses 'cookies'. Learn more