Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

At the current stage of diagnostics and therapy, it is necessary to perform a geometric evaluation of facial skull bone structures basing upon virtually reconstructed objects or replicated objects with reverse engineering. The objective hereof is an analysis of imaging precision for cranial bone structures basing upon spiral tomography and in relation to the reference model with the use of laser scanning. Evaluated was the precision of skull reconstruction in 3D printing, and it was compared with the real object, topography model and reference model. The performed investigations allowed identifying the CT imaging accuracy for cranial bone structures the development of and 3D models as well as replicating its shape in printed models. The execution of the project permits one to determine the uncertainty of components in the following procedures: CT imaging, development of numerical models and 3D printing of objects, which allows one to determine the complex uncertainty in medical applications.
Go to article

Abstract

Computer-aided tools help in shortening and eradicating numerous repetitive tasks that reduces the gap between digital model and actual product. Use of these tools assists in realizing free-form objects such as custom fit products as described by a stringent interaction with the human body. Development of such a model presents a challenging situation for reverse engineering (RE) which is not analogous with the requirement for generating simple geometric models. Hence, an alternating way of producing more accurate three-dimensional models is proposed. For creating accurate 3D models, point clouds are processed through filtering, segmentation, mesh smoothing and surface generation. These processes help in converting the initial unorganized point data into a 3D digital model and simultaneously influence the quality of model. This study provides an optimum balance for the best accuracy obtainable with maximum allowable deviation to lessen computer handling and processing time. A realistic non trivial case study of free-form prosthetic socket is considered. The accuracy obtained for the developed model is acceptable for the use in medical applications and FEM analysis.
Go to article

Abstract

The present article deals with the possibility of using the reverse engineering method for the production of prototype molds by Patternless process technology. Article describes method how to obtain virtual model by using a 3D scanner. Article also explains principle of the Patternless process technology, which is based on the milling mold cavity using CNC machining equipment. The aim of the research is the use of advanced technologies that speed up and facilitate the process of production prototype mold. The practical result of the presented experiment is bronze casting, which serves as a foot rest bracket on historic bike.
Go to article

This page uses 'cookies'. Learn more