Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:

Abstract

The purpose of the work was to experimentally determine the characteristics of the prototype of a Roto-Jet pump (the Pitot tube pump) during its operation under conditions typical for the domestic micro power plant. The low-boiling fluid, sold under the trade name of HFE7100 and characterised by a zero ozone depletion potential (ODP) coefficient, was used as a working medium in the organic Rankine cycle (ORC). An electric thermal oil heater with a maximum power of 2×24 kWe was used as a heat source. The pump of Roto-Jet type was specially designed for the operation with the following rated parameters of the thermodynamic cycle: nominal flow rate of the working fluid 0.17 kg/s, operating pressure 1.2 MPa. The pump was put under load using an expansion valve that simulated the operation of an expansion machine. The article discusses thermodynamic and flow conditions to be met by the pumping engine as well as results of the experimental research. Moreover, the article includes the operational characteristics of the ORC installation and the Roto-Jet pump obtained during the operation with the target working medium – HFE7100. The engineering problems the authors of this article faced when designing and testing the pumping engine prototype are also presented.
Go to article

Abstract

The pump performance and occurrence of cavitation directly depends on different operating conditions. To cover a wide range of operation conditions for detecting cavitation in this work, investigations on the effect of various suction valve openings on cavitation in the pump were carried out. In order to analyse various levels of cavitation in different operation conditions, the effect of the decrease in the inlet suction pressure of the centrifugal pump by controlling the inlet suction valve opening was investigated using this experimental setup. Hence, the acoustic and pressure signals under different inlet valve openings and different flow rates, namely, 103, 200, 302 l/min were collected for this purpose. A detailed analysis of the results obtained from the acoustic signal was carried out to predict cavitation in the pump under different operating conditions. Also, the acoustic signal was investigated in time domain through the use of the same statistical features. The FFT technique was used to analyse the acoustic signal in the frequency domain. In addition, in this work an attempt was made to find a relationship between the cavitation and noise characteristics using the acoustic technique for identifying cavitation within a pump.
Go to article

Abstract

An elaborate study executed in the direction of exploring energy saving potential shows that more than 20% of electrical energy used in industry is used for pump systems. Experts calculate that more than 30% of this energy can be saved by improving control and diagnosis for pump systems. Unfortunately, the application ratio of such system is small and consequently a large demand for such technological advanced systems can still be observed in the pump industry. Because of this reason and still growing demand of saving energy in industry, two Universities in Germany and Switzerland together with leading German pump manufacturer decided to join their knowledge and skill to work on the project called "Smart Pump". This paper presents one of the first results of this project, which goal is the development of future control methods and diagnosis systems for intelligent pumps.
Go to article

Abstract

The article addresses the issues falling within the scope of the economic analysis of a detached building’s heating system with a direct evaporation ground source heat pump installation. The paper was elaborated based on the data made available by the investment’s contractor and the investor. The paper provides data on the investment expenditures and utility cost, calculations of the installation payback, internal return rate and the current net value.
Go to article

Abstract

The opportunity to assess haemolysis in a designed artificial heart seems to be one of the most important stages in construction. We propose a new method for assessing haemolysis level in a rotary blood pump. This method is based on CFD calculations using large eddy simulations (LES). This paper presents an approach to haemolysis estimation and shows examples of numerical simulation. Our method does not determine the value of haemolysis but allows for comparison of haemolysis levels between different artificial heart constructions.
Go to article

Abstract

Research in termoacoustics began with the observation of the heat transfer between gas and solids. Using this interaction the intense sound wave could be applied to create engines and heat pumps. The most important part of thermoacoustic devices is a regenerator, where press of conversion of sound energy into thermal or vice versa takes place. In a heat pump the acoustic wave produces the temperature difference at the two ends of the regenerator. The aim of the paper is to find the influence of the material used for the construction of a regenerator on the properties of a thermoacoustic heat pump. Modern technologies allow us to create new materials with physical properties necessary to increase the temperature gradient on the heat exchangers. The aim of this paper is to create a regenerator which strongly improves the efficiency of the heat pump.
Go to article

Abstract

Centrifugal pumps are used for different applications that include pressure boosting, wastewater, water supply, heating and cooling distribution and other industrial processes. This paper presents theoretical and experimental investigations of mechanical vibrations of a centrifugal pump. The flow in this pump, which induces pressure pulsations and mechanical vibrations, have been monitored. Vibration measurements and data collection (overall vibrations levels and frequency spectrum) were extracted from the system. In addition, one of the methods used to study vibration amplitudes for this pump is forced response analysis. To study and analyze the pump system, the finite element analysis software (ANSYS) was applied. Depending on the analysis performed and investigations outcomes, the system natural frequency coincides with the vane-pass frequency (VPF) hazardously. To attenuate the system’s vibration, a vibration control element was used. The vibration levels were reduced by a factor of 2 for a tuned element as obtained from a forced harmonic response analysis of the pump system with absorber. It is shown that the inserted element allows the centrifugal pump to work in a safe operating range without any interference with its operation.
Go to article

Abstract

The paper deals with an application-specific integrated circuit (ASIC) facilitating voltage conversion in thermoelectric energy harvesters. The chip is intended to be used to boost up the voltage coming from a thermoelectric module to a level that is required by electronic circuits constituting wireless sensor nodes. The designed charge pump does not need any external parts for its proper operation because all the capacitors, switches and oscillator are integrated on the common silicon die. The topography of the main functional blocks and post-layout simulations of the designed integrated circuit are shown in the article.
Go to article

Abstract

The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling
Go to article

Abstract

In the paper a heating system with a vapour compressor heat pump and vertical U-tube ground heat exchanger for small residential house is considered. A mathematical model of the system: heated object - vapour compressor heat pump - ground heat exchanger is presented shortly. The system investigated is equipped, apart from the heat pump, with the additional conventional source of heat. The processes taking place in the analyzed system are of unsteady character. The model consists of three elements; the first containing the calculation model of the space to be heated, the second - the vertical U-tube ground heat exchanger with the adjoining area of the ground. The equations for the elements of vapour compressor heat pump form the third element of the general model. The period of one heating season is taken into consideration. The results of calculations for two variants of the ground heat exchanger are presented and compared. These results concern variable in time parameters at particular points of the system and energy consumption during the heating season. This paper presents the mutual influence of the ground heat exchanger subsystem, elements of vapour compressor heat pump and heated space.
Go to article

Abstract

This paper presents the results of thermodynamic analyses of a system using a horizontal ground heat exchanger to cool a residential building in summer and heat it in the autumn-winter period. The main heating device is a vapour compression heat pump with the ground as the lower heat source. The aim of the analyses is to examine the impact of heat supply to the ground in the summer period, when the building is cooled, on the operation of the heating system equipped with a heat pump in the next heating season, including electricity consumption. The processes occurring in cooling and heating systems have an unsteady nature. The main results of the calculations are among others the time-dependent values of heat fluxes extracted from or transferred to the ground heat exchanger, the fluxes of heat generated by the heat pump and supplied to the heated building by an additional heat source, the parameters in characteristic points of the systems, the temperature distributions in the ground and the driving electricity consumption in the period under analysis. The paper presents results of analysis of cumulative primary energy consumption of the analyzed systems and cumulative emissions of harmful substances. Słowa kluczowe
Go to article

Abstract

In this paper, the author presents the possibility of using phase trajectory for detecting damage in an axial piston pump. The wear on main part of pump elements, such as the rotor and the valve plate, was investigated, and phase trajectories were determined based on vibration signal measured in three directions on the pump's body. In order to obtain a quantitative measure of the analyzed trajectory, the At_{p,i} parameter was introduced, and the relation between this parameter and the wear on the pump's parts was determined.
Go to article

Abstract

This study presents a possibility of detecting wear of a valve plate in multi-piston axial pump based on time-frequency analysis of measured signals. Short-time Fourier transform STFT and the generalized Wigner-Ville algorithm WVD were used for this purpose. The tests were carried out on a multi-piston axial pump with swinging plate, in which the worn valve plates were mounted. Valve plate wear was related with the formation of flow micro-channels between the pump suction hole and its pumping hole on the plate transition zone surface. The developed channels initiate flow of the operational fluid, the results of which is lack of leak-tightness between suction and pumping zones, associated with a decrease in operational pressure and drop in general efficiency.
Go to article

Abstract

In this study a cooling ejector cycle coupled to a compression heat pump is analyzed for simultaneous cooling and heating applications. In this work, the influence of the thermodynamic parameters and fluid nature on the performances of the hybrid system is studied. The results obtained show that this system presents interesting performances. The comparison of the system performances with hydrofluorocarbons (HFC) and natural fluids is made. The theoretical results show that the a low temperature refrigerant R32 gives the best performance.
Go to article

Abstract

The paper presents the analysis of results of the investigations concerning a vertical pipe submersion coefficient h/L with an air-water mixer of the described type. The investigations were performed on an air lift pump testing stand, constructed in a laboratory on a scale of 1:1. At first, the paper presents the possibilities of application of air lift pumps. The investigations to date have been briefly characterized and a research problem formulated. Then the paper describes the construction and working principle of the air lift pump testing stand, constructed in a laboratory. It presents the methodology of derivation of empirical formulas for calculation of vertical pipe submersion coefficients h/L. The comparative analysis of the values of h/L determined in the measurements with the values of h/L calculated using the derived empirical formulas was carried out. The research scope encompassed the derivation of the aforementioned empirical formulas for five fixed values of air lift pump delivery head H, comparison of the obtained values h/L determined in the measurements with the values of h/L calculated using the derived empirical formulas and the improved analytical Stenning-Martin model. To derive the empirical formulas for calculation of the vertical pipe submersion coefficient h/L, the dimensional analysis and multiple regression was applied. The investigations of the vertical pipe submersion coefficient h/L were carried out for the vertical pipe internal diameter d = 0.04 m and for the fixed delivery heads H: 0.45, 0.90, 1.35, 1.80, 2.25 m. The values calculated using the derived empirical formulas (23), (24), (25), (26), (27) coincide with the values of h/L determined in the measurements for the whole range of the investigated delivery heads H. On the other hand, the values of h/L calculated using the improved analytical Stenning-Martin model do not coincide with the values of h/L determined in the measurements for the delivery heads H equal 0.45 and 0.90 m, whereas they are comparable for H equal 1.35, 1.80, 2.25 m. For the tested air lift pump with the air-water mixer of the described type (Fig. 2), the maximum air pressure should not exceed pp = 145 kPa, because for higher pressures the water flow rate diminishes. In the air lift pump being tested, the water flow rate Qw grows along with the rise in the air flow rate and in the vertical pipe submersion coefficient h/L whereas falls along with the rise in the delivery head H.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

The paper presents selected issues relating to the energy analysis of the air heat pump for hot water. Experimental studies on a test stand made it possible to verify the operational parameters of the heat pump under actual conditions of use. The study shows that heating the water in the storage tank with the capacity of 130 dm3 from 25°C to 40°C took approximately 60 minutes and the water heating for another 5°C took 30 minutes longer. The heat pump process in the field of higher water temperature in the tank is less effective, thus heating the water in the tank above 50°C is less favorable economically.
Go to article

Abstract

The possibility of distinguishing and assessing the influences of defects in particular pump elements by registering vibration signals at characteristic points of the pump body would be a valuable way for obtaining diagnostic information. An effective tool facilitating this task could be a well designed and identified dynamic model of the pump. When applied for a specific type of the pump, such model could additionally help to improve its construction. This paper presents model of axial piston positive displacement pump worked out by the authors. After taking the simplifying assumptions and dividing the pump into three sets of elements, it was possible to build a discrete dynamic model with 13 degrees of freedom. According to the authors' intention, the developed dynamic model of the multi-piston pump should be used for damage simulation in its individual elements. By gradual change in values of selected construction parameters of the object (for example: stiffness coefficients, damping coefficients), it is possible to perform simulation of wear in the pump. Initial verification of performance of the created model was done to examine the effect of abrasive wear on the swash plate surface. The phase trajectory runs estimated at characteristics points of the pump body were used as a useful tool to determine wear of pump elements.
Go to article

Abstract

Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator. The transferred heat and the pressure drop predicted by simulation have been compared with the corresponding experimental data taken from the literature. Two dimensional analyses of the louvered fins with varying geometry have been conducted. Simulations have been performed for different geometries with varying louver pitch, louver angle and different louver blade number. Constant inlet air temperature and varying velocity ranging from 2 to 8 m/s was assumed in the numerical experiments. The air-side performance is evaluated by calculating the temperature and the pressure drop ratio. Efficiency curves are obtained that can be used to select optimum louver geometry for the selected inlet parameters. A total of 363 different cases of various fin geometry for 7 different air velocities were investigated. The maximum heat transfer improvement interpreted in terms of the maximum efficiency has been obtained for the louver angle of 16° and the louver pitch of 1.35 mm. The presented results indicate that varying louver geometry might be a convenient way of enhancing performance of heat exchangers.
Go to article

Abstract

The effects of water-side operating conditions (mass flow rates and inlet temperatures) of both evaporator and gas cooler on the experimental as well as simulated performances (cooling and heating capacities, system coefficient of performance (COP) and water outlet temperatures) of the transcritical CO2 heat pump for simultaneous water cooling and heating the are studied and revised. Study shows that both the water mass flow rate and inlet temperature have significant effect on the system performances. Test results show that the effect of evaporator water mass flow rate on the system performances and water outlet temperatures is more pronounced (COP increases by 0.6 for 1 kg/min) compared to that of gas cooler water mass flow rate (COP increases by 0.4 for 1 kg/min) and the effect of gas cooler water inlet temperature is more significant (COP decreases by 0.48 for given range) compared to that of evaporator water inlet temperature (COP increases by 0.43 for given range). Comparisons of experimental values with simulated results show the maximum deviation of 5% for cooling capacity, 10% for heating capacity and 16% for system COP.
Go to article

Abstract

The small number of available complete modern pump characteristics makes the safety analysis of nuclear and conventional power plants based on the characteristics made over half a century ago of specific speeds n_q=24.6, 147.1 and 261.4. The aim of the paper is to check sensitivity of the power plant system response for different complete pump characteristics - modern and available from older tests for n_q=24.6, 147.1 and 261.4. It has been shown that Suter's characteristics for modern pumps give a different response to the pumping system of a power plant in breakdown than those used so far.
Go to article

Abstract

This paper presents a development of a model of a set of multistage centrifugal electro pumps including two 4 stage stainless steel centrifugal pumps, each coupled to a 4 kW three-phase induction motor, connected to a hydraulic application running under two control strategies including constant speed and variable speed methods. Each pump provides 16 m3/hr flow rate and 58mwaterhead at BEP (Best Efficiency Point). Dynamicity of the model causes variations in all operational parameters of pumping system in any variation on consuming flow rate. Each electro pump has been driven with a variable frequency drive utilizing frequency control method for adjusting the rotational speed under a PID control regarding to match of pumping system operational point with the consumption point to save the energy. 83% energy saving is achieved by model in variable speed control strategy comparing to constant speed control strategy. MATLAB/SIMULINK software using ode45 solver and variable step size simulates this model.
Go to article

This page uses 'cookies'. Learn more