Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:

Abstract

The pump performance and occurrence of cavitation directly depends on different operating conditions. To cover a wide range of operation conditions for detecting cavitation in this work, investigations on the effect of various suction valve openings on cavitation in the pump were carried out. In order to analyse various levels of cavitation in different operation conditions, the effect of the decrease in the inlet suction pressure of the centrifugal pump by controlling the inlet suction valve opening was investigated using this experimental setup. Hence, the acoustic and pressure signals under different inlet valve openings and different flow rates, namely, 103, 200, 302 l/min were collected for this purpose. A detailed analysis of the results obtained from the acoustic signal was carried out to predict cavitation in the pump under different operating conditions. Also, the acoustic signal was investigated in time domain through the use of the same statistical features. The FFT technique was used to analyse the acoustic signal in the frequency domain. In addition, in this work an attempt was made to find a relationship between the cavitation and noise characteristics using the acoustic technique for identifying cavitation within a pump.
Go to article

Abstract

An elaborate study executed in the direction of exploring energy saving potential shows that more than 20% of electrical energy used in industry is used for pump systems. Experts calculate that more than 30% of this energy can be saved by improving control and diagnosis for pump systems. Unfortunately, the application ratio of such system is small and consequently a large demand for such technological advanced systems can still be observed in the pump industry. Because of this reason and still growing demand of saving energy in industry, two Universities in Germany and Switzerland together with leading German pump manufacturer decided to join their knowledge and skill to work on the project called "Smart Pump". This paper presents one of the first results of this project, which goal is the development of future control methods and diagnosis systems for intelligent pumps.
Go to article

Abstract

The article addresses the issues falling within the scope of the economic analysis of a detached building’s heating system with a direct evaporation ground source heat pump installation. The paper was elaborated based on the data made available by the investment’s contractor and the investor. The paper provides data on the investment expenditures and utility cost, calculations of the installation payback, internal return rate and the current net value.
Go to article

Abstract

Centrifugal pumps are used for different applications that include pressure boosting, wastewater, water supply, heating and cooling distribution and other industrial processes. This paper presents theoretical and experimental investigations of mechanical vibrations of a centrifugal pump. The flow in this pump, which induces pressure pulsations and mechanical vibrations, have been monitored. Vibration measurements and data collection (overall vibrations levels and frequency spectrum) were extracted from the system. In addition, one of the methods used to study vibration amplitudes for this pump is forced response analysis. To study and analyze the pump system, the finite element analysis software (ANSYS) was applied. Depending on the analysis performed and investigations outcomes, the system natural frequency coincides with the vane-pass frequency (VPF) hazardously. To attenuate the system’s vibration, a vibration control element was used. The vibration levels were reduced by a factor of 2 for a tuned element as obtained from a forced harmonic response analysis of the pump system with absorber. It is shown that the inserted element allows the centrifugal pump to work in a safe operating range without any interference with its operation.
Go to article

Abstract

This study presents a possibility of detecting wear of a valve plate in multi-piston axial pump based on time-frequency analysis of measured signals. Short-time Fourier transform STFT and the generalized Wigner-Ville algorithm WVD were used for this purpose. The tests were carried out on a multi-piston axial pump with swinging plate, in which the worn valve plates were mounted. Valve plate wear was related with the formation of flow micro-channels between the pump suction hole and its pumping hole on the plate transition zone surface. The developed channels initiate flow of the operational fluid, the results of which is lack of leak-tightness between suction and pumping zones, associated with a decrease in operational pressure and drop in general efficiency.
Go to article

Abstract

In this paper, the author presents the possibility of using phase trajectory for detecting damage in an axial piston pump. The wear on main part of pump elements, such as the rotor and the valve plate, was investigated, and phase trajectories were determined based on vibration signal measured in three directions on the pump's body. In order to obtain a quantitative measure of the analyzed trajectory, the At_{p,i} parameter was introduced, and the relation between this parameter and the wear on the pump's parts was determined.
Go to article

Abstract

The paper presents selected issues relating to the energy analysis of the air heat pump for hot water. Experimental studies on a test stand made it possible to verify the operational parameters of the heat pump under actual conditions of use. The study shows that heating the water in the storage tank with the capacity of 130 dm3 from 25°C to 40°C took approximately 60 minutes and the water heating for another 5°C took 30 minutes longer. The heat pump process in the field of higher water temperature in the tank is less effective, thus heating the water in the tank above 50°C is less favorable economically.
Go to article

Abstract

The small number of available complete modern pump characteristics makes the safety analysis of nuclear and conventional power plants based on the characteristics made over half a century ago of specific speeds n_q=24.6, 147.1 and 261.4. The aim of the paper is to check sensitivity of the power plant system response for different complete pump characteristics - modern and available from older tests for n_q=24.6, 147.1 and 261.4. It has been shown that Suter's characteristics for modern pumps give a different response to the pumping system of a power plant in breakdown than those used so far.
Go to article

Abstract

In this study a cooling ejector cycle coupled to a compression heat pump is analyzed for simultaneous cooling and heating applications. In this work, the influence of the thermodynamic parameters and fluid nature on the performances of the hybrid system is studied. The results obtained show that this system presents interesting performances. The comparison of the system performances with hydrofluorocarbons (HFC) and natural fluids is made. The theoretical results show that the a low temperature refrigerant R32 gives the best performance.
Go to article

Abstract

The paper presents the analysis of results of the investigations concerning a vertical pipe submersion coefficient h/L with an air-water mixer of the described type. The investigations were performed on an air lift pump testing stand, constructed in a laboratory on a scale of 1:1. At first, the paper presents the possibilities of application of air lift pumps. The investigations to date have been briefly characterized and a research problem formulated. Then the paper describes the construction and working principle of the air lift pump testing stand, constructed in a laboratory. It presents the methodology of derivation of empirical formulas for calculation of vertical pipe submersion coefficients h/L. The comparative analysis of the values of h/L determined in the measurements with the values of h/L calculated using the derived empirical formulas was carried out. The research scope encompassed the derivation of the aforementioned empirical formulas for five fixed values of air lift pump delivery head H, comparison of the obtained values h/L determined in the measurements with the values of h/L calculated using the derived empirical formulas and the improved analytical Stenning-Martin model. To derive the empirical formulas for calculation of the vertical pipe submersion coefficient h/L, the dimensional analysis and multiple regression was applied. The investigations of the vertical pipe submersion coefficient h/L were carried out for the vertical pipe internal diameter d = 0.04 m and for the fixed delivery heads H: 0.45, 0.90, 1.35, 1.80, 2.25 m. The values calculated using the derived empirical formulas (23), (24), (25), (26), (27) coincide with the values of h/L determined in the measurements for the whole range of the investigated delivery heads H. On the other hand, the values of h/L calculated using the improved analytical Stenning-Martin model do not coincide with the values of h/L determined in the measurements for the delivery heads H equal 0.45 and 0.90 m, whereas they are comparable for H equal 1.35, 1.80, 2.25 m. For the tested air lift pump with the air-water mixer of the described type (Fig. 2), the maximum air pressure should not exceed pp = 145 kPa, because for higher pressures the water flow rate diminishes. In the air lift pump being tested, the water flow rate Qw grows along with the rise in the air flow rate and in the vertical pipe submersion coefficient h/L whereas falls along with the rise in the delivery head H.
Go to article

Abstract

This paper presents a development of a model of a set of multistage centrifugal electro pumps including two 4 stage stainless steel centrifugal pumps, each coupled to a 4 kW three-phase induction motor, connected to a hydraulic application running under two control strategies including constant speed and variable speed methods. Each pump provides 16 m3/hr flow rate and 58mwaterhead at BEP (Best Efficiency Point). Dynamicity of the model causes variations in all operational parameters of pumping system in any variation on consuming flow rate. Each electro pump has been driven with a variable frequency drive utilizing frequency control method for adjusting the rotational speed under a PID control regarding to match of pumping system operational point with the consumption point to save the energy. 83% energy saving is achieved by model in variable speed control strategy comparing to constant speed control strategy. MATLAB/SIMULINK software using ode45 solver and variable step size simulates this model.
Go to article

This page uses 'cookies'. Learn more