Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Helical coil heat exchangers are widely used in a variety of industry applications such as refrigeration systems, process plants and heat recovery. In this study, the effect of Reynolds number and the operating temperature on heat transfer coefficients and pressure drop for laminar flow conditions was investigated. Experiments were carried out in a shell and tube heat exchanger with a copper coiled pipe (4 mm ID, length of 1.7 m and coil pitch of 7.5 mm) in the temperature range from 243 to 273 K. Air – propan-2-ol vapor mixture and coolant (methylsilicone oil) flowed inside and around the coil, respectively. The fluid flow in the shell-side was kept constant, while in the coil it was varied from 6.6 to 26.6 m/s (the Reynolds number below the critical value of 7600). Results showed that the helical pipe provided higher heat transfer performance than a straight pipe with the same dimensions. The convective coefficients were determined using theWilson method. The values for the coiled pipe were in the range of 3–40 W/m2 ·K. They increased with increasing the gas flow rate and decreasing the coolant temperature.
Go to article

Abstract

This study applied a modified OxiTop® system to determine the oxygen uptake rate during a 2-day respiration test of selected composting materials at different moisture contents, air-filled porosities and composition of composting mixtures. The modification of the OxiTop® respirometer included replacement and adjustment of a glass vessel (i.e. a 1.9-L glass vessel with wide mouth was used instead of a standard 1-L glass bottle, additionally the twist-off vessel lid was adjusted to attach the measuring head) and application of a closed steel mesh cylinder of 5 cm in diameter and 10 cm in height with the open surface area of the mesh of approximately 56.2%. This modification allowed obtaining different bulk densities (and thus air-porosities) of the investigated composting materials in laboratory composting studies. The test was performed for apple pomace and composting mixtures of apple pomace with wood chips at ratios of 1:0.5, 1:1, 1:1.5 (d.w), moisture contents of 60%, 65% and 75% and air-filled porosities ranging from 46% to 1%. Due to diverse biodegradability of the investigated apple pomace and composting mixtures this test allows for the determination of the effects of different air-porosities (due to compaction in a pile) on the oxygen uptake rate for mixtures with a fixed ratio of a bulking agent. The described method allows for laboratory determination of the effects of moisture content and compaction on biodegradation dynamics during composting.
Go to article

This page uses 'cookies'. Learn more