Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Twenty-eight two-, three-, four-, and five-component amine mixtures have been evaluated as possible activators of CO2 absorption into aqueous carbonate/bicarbonate solutions. Measurements were per- formed using a pressure autoclave with a sparger at conditions close to industrial ones. On the basis of these results, a formula for a new, more efficient amine activator named INS13 was developed. The activator was tested both in a pilot plant and on an industrial scale in an ammonia plant producing 300 tons/day of ammonia. Activator INS13 was applied in a number of ammonia plants in Poland and abroad.
Go to article

Abstract

Results of an extensive research program, aimed at finding new, more efficient activators of carbon dioxide absorption into aqueous carbonate/bicarbonate solutions are presented. Both single amines (2-ethyl-aminoethanol, 2-isopropyl aminoethanol, piperazine, tetraethylenepentamine, N-ethyl-piperazine and glicyne) and amine mixtures have been investigated. Absorption rate measurements were conducted in a laminar-jet absorber. Reaction rate constants for the particular activators were determined. Mixtures of aliphatic amines with cyclic amines, as well as mixtures of cyclic amines with cyclic amines were found to exhibit synergetic effect. Such amine mixtures might be used as new promoters for CO2 absorption in carbonate solutions in the modified Benfield process.
Go to article

Abstract

In the paper the results of measurements of CO2 absorption rate in aqueous potassium carbonate solutions containing cyclohexylamine, diethanolamine, 2-methylaminoethanol and triethylenetetramine as activators have been presented. Enhnancement mass transfer factors as well as reaction rate constants have been determined. Results show that among the tested activators triethylenetetramine and 2-methyl-aminoethanol may be used (instead of diethanolamine) as new promotors in a modified BENFLIELD process.
Go to article

This page uses 'cookies'. Learn more