Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 20
items per page: 25 50 75
Sort by:

Abstract

Introduction of polymers into the cement composites improves same of the properties of concretes and mortars. Therefore, the polymer-cement composites are successfully used in construction. The model of microstructure formation in cement composites modified with thermoplastic polymer (pre-mix modifiers) has already been developed and successfully implemented. However, the formation of microstructure in the case of epoxy-cement composites (containing post-mix modifier) demonstrates same peculiarities which should be taken into account when modelling the process. The microstructure of epoxy-cement composites and its formation is discussed in the paper. The model is offered, formulated on the basis of the microscopic observations and results of testing.
Go to article

Abstract

The preliminary stage of asphalt mixture production involves the drying and dedusting of coarse aggregates. The most common types of coarse aggregates used are limestone and basalt. In the process of drying and dedusting the dryer filter accumulates large quantities of waste in the form of mineral powder. This paper introduces an investigation into limestone powder waste as a potential microfiller of polymer composites. Physical characteristics such as the granulation the of powder collected from the filter - in terms of the season of its collection and the type of input materials used - were analysed. A scanning electron microscope (SEM) was used for the investigation described within this paper. The obtained results were compared against those of other materials which can be used as polymer composites microfillers.
Go to article

Abstract

The influence of ion implantation on the structure and properties of polymers is a very complex issue. Many physical and chemical processes taking place during ion bombardment must be taken into consideration. The complexity of the process may exert both positive and negative influence on the structure of the material. The goal of this paper is to investigate the influence of H+, He+ and Ar+ ion implantation on the properties of polypropylene membranes used in filtration processes and in consequence on fouling phenomena. It has appeared that the ion bombardment caused the chemical modification of membranes which has led to decrease of hydrophobicity. The increase of protein adsorption on membrane surface has also been observed.
Go to article

Abstract

The paper presents results of the field tests on membrane biogas enrichment performed with the application of mobile membrane installation (MMI) with the feed stream up to 10 Nm3/h. The mobile installation equipped with four hollow fibre modules with polyimide type membranes was tested at four different biogas plants. Two of them were using agricultural substrates. The third one was constructed at a municipal wastewater plant and sludge was fermented in a digester and finally in the fourth case biogas was extracted from municipal waste landfill site. Differences in the concentration of bio-methane in feed in all cases were observed and trace compounds were detected as well. High selectivity polyimide membranes, in proper module arrangements, can provide a product of high methane content in all cases. The content of other trace compounds, such as hydrogen sulphide, water vapour and oxygen on the product did not exceed the values stated by standard for a biogas as a vehicle fuel. The traces of hydrogen sulphide and water vapour penetrated faster to the waste stream enriched in carbon dioxide, which could lead to further purification of the product – methane being hold in the retentate (H2O > H2S > CO2 > O2 > CH4 > N2). In the investigated cases, when concentration of N2 was low and concentration of CH4 higher than 50%, it was possible to upgrade methane to concentration above 90% in a two-stage cascade. To performsimulation ofCH4 andCO2 permeation through polyimide membrane,MATLABwas used. Simulation program has included permeation gaseous mixture with methane contents as observed at field tests in the range of 50 and 60% vol. The mass transport process was estimated for a concurrent hollow fibre membrane module for given pressure and temperature conditions and different values of stage cut. The obtained results show good agreement with the experimental data. The highest degree of methane recovery was obtained with gas concentrating in a cascade with recycling of the retentate.
Go to article

Abstract

Very thin liquid jets can be obtained using electric field, whereas an electrically-driven bending instability occurs that enormously increases the jet path and effectively leads to its thinning by very large ratios, enabling the production of nanometre size fibres. This mechanism, although it was discovered almost one century ago, is not yet fully understood. In the following study, experimental data are collected, with the dual goal of characterizing the electro-spinning of different liquids and evaluating the pertinence of a theoretical model.
Go to article

Abstract

Two constructions of microfluidic structures are described in this paper. A fibre optic microcell for spectrophometric measurements and a microcell for fluorescence experiments were designed and tested. The structures were made of polymer optical fibres which were incorporated into polymeric material i.e. poly(dimethylsiloxane). The structures were tested as detectors in absorbance measurement (solutions of bromothymol blue with diffierent pH were used) and in fluorescence tests (solution of fluoresceine was used).
Go to article

Abstract

It was found that the addition of carbon fibers (CFs) does not affect the crosslinking process in the microwave radiation (800 W, 2.45 GHz) of the BioCo2 binder, which is a water solution of poly(acrylic acid) and dextrin (PAA/D). It has influence on BioCo2 thermal properties. The CFs addition improves the thermostability of a binder and leads to the reduction of gas products quantity generated in the temperature range of 300-1100°C (TG-DTG, Py-GC/MS). Moreover, it causes the emission of harmful decomposition products such as benzene, toluene, xylene and styrene to be registered in a higher temperatures (above 700°C). BioCo2 binder without CFs addition is characterized by the emission of these substances in the lower temperature range. This indicates the positive effect of carbon fibers presence on the amount of released harmful products. The selected technological tests (permeability, friability, bending strength, tensile strength) have shown that the moulding sand with the 0.3 parts by weight carbon fibers addition displays the worst properties. The addition of 0.1 parts by weight of CFs is sufficient to obtain a beneficial effect on the analyzed moulding sands properties. The reduction of harmful substances at the higher temperatures can also be observed.
Go to article

Abstract

The paper deals with the preparation and measurement of an experimental polymer graphite cathode that seems to be a promising and cheap source of electrons utilizing cold field-emission in high- and ultra-high vacuum. Polymer graphite seems to be a proper material as it contains a large amount of hybridized carbon with a low degree of surface oxidation and silicon monoxide (SiO). Within the frame of this work, a special experimental method of tip preparation has been designed and tuned. This method is based on ion milling inside a dual-beam electron microscope enabling to obtain ultra-sharp tips of a diameter smaller than 100 nm with a predefined opening angle. The charge transport within experimental samples is evaluated based on results provided by the noise spectroscopy of the total emission current in the time and frequency domains.
Go to article

Abstract

Graphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.
Go to article

Abstract

The sound absorption property of polyurethane (PU) foams loaded with natural tea-leaf fibers and luffa cylindrica (LC) has been studied. The results show a significant improvement in the sound absorption property parallel to an increase in the amount of tea-leaf fibers (TLF). Using luffa-cylindrica as a filler material improves sound absorption properties of soft foam at all frequency ranges. Moreover, an increase in the thickness of the sample resulted in an improvement of the sound absorption property. It is pleasing to see that adding tea-leaf fibers and luffa-cylindrica to the polyurethane foam demonstrate a significant contribution to sound absorption properties of the material and it encourages using environmental friendly products as sound absorption material in further studies.
Go to article

Abstract

The paper presents a dynamic analysis of the damaged masonry building repaired with the Flexible Joint Method. Numerical analysis helped to determine the effect of the applied repairing method on natural frequencies as well as values of stresses and accelerations in the analyzed variants of numerical model. They confirmed efficiency of the proposed repair method.
Go to article

Abstract

The paper describes an experimental behaviour of the basalt fibre reinforced polymer composite by external strengthening to the concrete beams. The BFRP composite is wrapped at the bottom face of R.C beam as one layer, two layers, three layers and four layers. The different characteristics – are studied in – first crack load, ultimate load, tensile and compressive strain, cracks propagation, crack spacing and number of cracks etc. To – investigate, total of five beams size 100×160×1700 mm were cast. One beam is taken as control and others are strengthened with BFRP composite with layers. From this investigation, the first crack load is increased depending on the increment in layers from 6.79% to 47.98%. Similarly, the ultimate load carrying – capacity is increased from 5.66% to 20%. The crack’s spacing is also reduced with an increase in the number of layers.
Go to article

Abstract

Electrochemical amperometric gas sensors represent a well-established and versatile type of devices with unique features: good sensitivity and stability, short response/recovery times, and low power consumption. These sensors operate at room temperature, and therefore have been applied in monitoring air pollutants and detection of toxic and hazardous gases in a number of areas. Some drawbacks of classical electrochemical sensors are overcome by the solid polymer electrolyte (SPE) based on ionic liquids. This work presents evaluation of an SPE-based amperometric sensor from the point of view of current fluctuations. The sensor is based on a novel three-electrode sensor platform with solid polymer electrolytes containing ionic liquid for detection of nitrogen dioxide − a highly toxic gas that is harmful to the environment and presenting a possible threat to human health even at low concentrations. The paper focuses on using noise measurement (electric current fluctuation measurement) for evaluation of electrochemical sensors which were constructed by different fabrication processes: (i) lift-off and drop-casting technology, (ii) screen printing technology on a ceramic substrate and (iii) screen printing on a flexible substrate.
Go to article

Abstract

The effects of silica additive (Poraver) on selected properties of BioCo3 binder in form of an aqueous poly(sodium acrylate) and dextrin (PAANa/D) binder were determined. Based on the results of the thermoanalytical studies (TG-DTG, FTIR, Py-GC/MS), it was found that the silica additive results in the increase of the thermostability of the BioCo3 binder and its contribution does not affect the increase in the level of emissions of organic destruction products. Compounds from group of aromatic hydrocarbons are only generated in the third set temperature range (420-838°C). The addition of silicate into the moulding sand with BioCo3 causes also the formation of a hydrogen bonds network with its share in the microwave radiation field and they are mainly responsible for maintaining the cross-linked structures in the mineral matrix system. As a consequence, the microwave curing process in the presence of Poraver leads to improved strength properties of the moulding sand (���� �� ). The addition of Poraver's silica to moulding sand did not alter the permeability of the moulding sand samples, and consequently reduced their friability. Microstructure investigations (SEM) of microwave-cured samples have confirmed that heterogeneous sand grains are bonded to one another through a binder film (bridges).
Go to article

Abstract

This publication describes research on the course of the process of cross-linking new BioCo polymer binders - in the form of water-based polymer compositions of poly(acrylic acid) or poly(sodium acrylate)/modified polysaccharide - using selected physical and chemical factors. It has been shown that the type of cross-linking factor used influences the strength parameters of the moulding sand. The crosslinking factors selected during basic research make it possible to obtain sand strengths similar to those of samples of sands bonded with commercial binders. Microwave radiation turned out to be the most effective cross-linking factor in a binder-matrix system. It was proven that adsorption in the microwave radiation field leads to the formation of polymer lattices with hydrogen bonds which play a major role in maintaining the formed cross-linked structures in the binder-matrix system. As a result, the process improves the strength parameters of the sand, whereas the hardening process in a microwave field significantly shortens the setting time.
Go to article

Abstract

Polymer-based capacitive humidity sensors emerged around 40 years ago; nevertheless, they currently constitute large part of sensors’ market within a range of medium (climatic and industrial) humidity 20−80%RH due to their linearity, stability and cost-effectiveness. However, for low humidity values (0−20%RH) that type of sensor exhibits increasingly nonlinear characteristics with decreasing of humidity values. This paper presents the results of some experimental trials of CMOS polymer-based capacitive humidity sensors, as well as of modelling the behaviour of that type of sensor. A logarithmic functional relationship between the relative humidity and the change of sensor output value at low humidity is suggested.
Go to article

Abstract

Measurement of low-frequency noise properties of modern electronic components is a very demanding challenge due to the low magnitude of a noise signal and the limit of a dissipated power. In such a case, an ac technique with a lock-in amplifier or the use of a low-noise transformer as the first stage in the signal path are common approaches. A software dual-phase virtual lock-in (VLI) technique has been developed and tested in low-frequency noise studies of electronic components. VLI means that phase-sensitive detection is processed by a software layer rather than by an expensive hardware lock-in amplifier. The VLI method has been tested in exploration of noise in polymer thick-film resistors. Analysis of the obtained noise spectra of voltage fluctuations confirmed that the 1/f noise caused by resistance fluctuations is the dominant one. The calculated value of the parameter describing the noise intensity of a resistive material, C = 1·10−21 m3, is consistent with that obtained with the use of a dc method. On the other hand, it has been observed that the spectra of (excitation independent) resistance noise contain a 1/f component whose intensity depends on the excitation frequency. The phenomenon has been explained by means of noise suppression by impedances of the measurement circuit, giving an excellent agreement with the experimental data.
Go to article

Abstract

A review is given on a number of colloidal phenomena with special reference to their applicability to nanoparticles. Phenomena addressed include preparation, electric double layers and their characterization, electrokinetics, van der Waals and Lifshits forces, electric and steric particle interaction.
Go to article

Abstract

Single crystalline cesium doped ZnO nanorods with homogeneous size and shape were grown hydrothermally on ITO substrates that are presented in our previous work. According to the previous work, XRD analysis showed that cesium doped ZnO nanorods are wurtzite single crystals and are grown preferentially along the c-axis. Also, the electrical conductivity of doped ZnO showed higher values for the 1% cesium, which confirmed incorporation of the cesium dopant. Cesium doped ZnO nanorods are suitable candidates for applications in solar cells. So, in this research, we employed cesium doped ZnO nanorods with the different dopant concentration in inverted polymer solar cell. By comparing the effect of doped ZnO nanorods with diverse dopant concentration (0, 0.5, 1.0, 1.5 and 2%) on the performance of devices, 1.0% cesium doped ZnO was found as the most effective doping level among the selected doping concentrations. Also, using 1.0% cesium doped ZnO nanorods, Jsc of 8.21 mA/cm², Voc of 0.541V and Fill Factor of 63.01% were achieved, which led to power conversion efficiency of 2.80%.
Go to article

Abstract

Synthetic polymer latexes, such as styrene–butadiene rubber (SBR) latex addition in Portland cement has gained wider acceptance in many applications in the construction industry. Polymer-modified cementitious systems seals the pores and micro cracks developed during hardening of the cement matrix, by dispersing a film of polymer phase throughout the concrete. A comprehensive set of experimental test were conducted for studying the compressive properties of SBR latex polymer with crimped polypropylene fibres at relative volume fractions of 0.1 and 0.3%. The results indicated that the addition of polypropylene fibre has little effect on the reduction in the workability of concrete composite containing fly ash and SBR Latex. Increase in polypropylene fibres upto 0.3% Vf showed increase in compressive strength upto 57.5 MPa. The SBR concrete without fibre showed an increase in strength upto 20% compared to plain concrete. Test results also indicated that the compressive strength was increased in SBR fibre concrete by means of an ordinary dry curing process than wet curing because of their excellent water retention due to polymer film formation around the cement grains. On the contrary the compressive strength reduces for SBR fibre concretes under wet curing compared to dry curing.
Go to article

This page uses 'cookies'. Learn more