Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Several species of Solanum produce secondary metabolites with antimicrobial activity. In the present study, the inhibitory activity of Solanum chrysotrichum, S. erianthum, S. torvum and S. rostratum against phytopathogenic Curvularia lunata was determined. Methanol extracts from roots, stems, leaves and fruits were evaluated by the method of mycelial inhibition on agar and the minimum inhibitory concentration (MIC) was determined on a liquid medium. To increase the antimicrobial activity, the combined activity of the most active extracts for each phytopathogen was also determined (a combination of intra and interspecies extracts). The results showed that 12 of the 16 methanolic extracts of Solanum species had antifungal effects against C. lunata. The extracts of S. rostratum and S. erianthum developed the highest activity (~80% inhibition and 28.4 MIC μg . ml–1), even, equal to or greater than, the reference fungicide. The mixture of the active extracts of S. chrysotrichum and S. torvum increased their activity. Various extracts affected the macro and microscopic morphology and most of them reduced the number of conidia of the fungus. This resulted in the capacity to control the vegetative growth and reproduction of C. lunata, the causal fungus of corn leaf spot disease.
Go to article

Abstract

The tuber necrotic strain of Potato virus Y (PVYNTN) causes widespread disease and has severe negative effects on the growth and yields of plants, especially those of the Solanaceae family. The consequences of residual toxicity and non-biodegradation of synthetic chemicals and pollution of the environment has led to investigations into new non-toxic and biological treatments to control plant viral diseases. Ethanolic extracts of Bowiea volubilis (bulbs), Cotyledon orbiculata (leaves), Gomphocarpus fruticosus (leaves), Merwilla plumbea (dry and fresh bulbs), Nerium oleander (leaves), and the fruits and leaves of Strophanthus speciosus, were evaluated against PVYNTN in vivo and in vitro. At a concentration of 20 mg · ml−1, ethanolic extracts of Strophanthus speciosus (leaves) and fruits (50 mg · ml−1) significantly reduced the expression of PVYNTN symptoms on tobacco plants in vitro without affecting the normal growth and development of the plant. Similarly, at 50 mg · ml−1, N. oleander, C. orbiculata and B. volubilis (fresh bulbs) and S. speciousus leaves at 20 mg · ml−1 extracts showed significant differences in PVYNTN symptoms in the in vivo experiment. Strophanthus speciosus leaf and fruit extracts showed significant inhibition in the in vitro and in vivo assays and demonstrated that S. speciosus has potential to be used as an antiphytoviral treatment.
Go to article

Abstract

Despite many phytochemical and pharmacological investigations, to date, there are no reports concerning the antibabesial activity of extracts of A. millefolium against B. canis. This study was aimed at investigating the biological activities of A. millefolium against the Babesia canis parasite and to identify its chemical ingredients. The water (WE), ethanol (EE) and hexane/acetone (H/AE) extracts of plant aerial parts were screened for total phenolic content (TPC), total flavo- noid compound (TFC), DPPH free radical-scavenging activity and its antibabesial activity assay. In this study, imidocarb diproprionate was used as a positive control. The H/AE and EE extracts were analysed using gas chromatography–mass spectroscopy (GC–MS). In the EE extract, the main compounds were 17.64% methyl octadec-9-ynoate, 16.68% stigmast-5-en-3-ol(3α,24S) and 15.17% hexadecanoic acid. In the H/AE extract, the main com- pounds were 34.55% 11-decyldocosane, 14.31% N-tetratetracontane, 8.22% β-caryophyllene, and 7.69% N-nonacosane. Extract of EE contained the highest content of phenolics followed by H/AE and WE. The concentration of flavonoids in EE, H/AE and WE extracts showed that TFC was higher in the EE samples followed by H/AE and WE. The antioxidant activities were highest for AA, followed by EE, WE and H/AE. The antibabesial assay showed that the WE, EE and H/AE extracts of A. millefolium were antagonistic to B. canis. At a 2 mg/mL concentration, it showed 58.7% (± 4.7%), 62.3% (± 5.5%) and 49.3% (± 5.1%) inhibitory rate in an antibabesial assay, respectively. Considering these results, the present findings suggest that A. millefolium extracts may be a potential therapeutic agent and that additional studies including in vivo experiments are essential.
Go to article

This page uses 'cookies'. Learn more