Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

This study analysed the influence of montelukast (MON; 10-8 - 10-4 M), a cysteinyl leukotriene receptor 1 (CysLTR1) antagonist, on the contractility of the porcine uterine smooth muscle in the luteal phase of the oesterous cycle (n=8) and in early pregnancy (n=8). Stimulation of uterine strips in the luteal phase with MON has been shown to significantly reduce the amplitude of con- tractions, but not to affect the tension or frequency of contractions. A statistically significant tension increase and decrease in the frequency and amplitude of contractions was observed in pigs in early pregnancy. This suggests that MON has a different effect on the parameters under study in cyclic and pregnant pigs.
Go to article

Abstract

Animals as a source of organs and tissues for xenotransplantation could become a backup solution for the growing shortage of human donors. The presence of human xenoreactive anti- bodies directed against Galα1,3Gal antigens on the cell surface of a pig donor triggers the activa- tion of the complement leading to a hyperacute reaction. The development of genetic engineer- ing techniques has enabled the modification of genomes by knocking in and/or knocking out genes. In this paper, we report the generation of modified pigs with ZFN mediated disruption of the GGTA1 gene encoding the enzyme responsible for synthesis of Galα1,3Gal antigens. ZFN plasmids designed to target the exon 9 region of the pig GGTA1 gene encoding the catalytic domain were injected into the pronuclei of fertilized egg cells. Among 107 piglets of the F0 gene- ration analyzed, one female with 9-nt deletion in exon 9 of the GGTA1 gene was found. 13 of 33 piglets of the F1 generation represented the +/- GGTA1 genotype and 2 of 13 F2 piglets repre- sented the -/- GGTA1 genotype. No changes in the animals’ behavior, phenotype or karyotype were observed. Analysis confirmed heredity of the trait in all animals. A complex functional analysis of the modified animals, including flow cytometry, human serum cytotoxicity test and immunohistochemical detection, was performed to estimate the phenotype effect of genetic modification and this indicated an efficient GGTA1 knock-out in modified pigs.
Go to article

Abstract

The present study investigated the expression of androgen receptor (AR) in neurons of the anterior pelvic ganglion (APG) and celiac-superior mesenteric ganglion (CSMG; ganglion not involved in the innervation of reproductive organs) in the male pig with quantitative real-time PCR (qPCR) and immunohistochemistry. qPCR investigations revealed that the level of AR gene expression in the APG tissue was approximately 2.5 times higher in the adult (180-day-old) than in the juvenile (7-day-old) boars. Furthermore, in both the adult and juvenile animals it was sig- nificantly higher in the APG than in CSMG tissue (42 and 85 times higher, respectively). Immu- nofluorescence results fully confirmed those obtained with qPCR. In the adult boars, nearly all adrenergic (DβH-positive) and the majority of non-adrenergic neurons in APG stained for AR. In the juvenile animals, about half of the adrenergic and non-adrenergic neurons were AR-posi- tive. In both the adult and juvenile animals, only solitary CSMG neurons stained for AR. The present results suggest that in the male pig, pelvic neurons should be considered as an element of highly testosterone-dependent autonomic circuits involved in the regulation of urogenital func- tion, and that their sensitization to androgens is a dynamic process, increasing during the prepu- bertal period.
Go to article

This page uses 'cookies'. Learn more