Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

In this work the design aspects of a piezoelectric-based resonance ceramic pressure sensor made using low-temperature co-fired ceramic (LTCC) technology and designed for high-temperature applications is presented. The basic pressure-sensor structure consists of a circular, edge-clamped, deformable diaphragm that is bonded to a ring, which is part of the rigid ceramic structure. The resonance pressure sensor has an additional element – a piezoelectric actuator – for stimulating oscillation of the diaphragm in the resonance-frequency mode. The natural resonance frequency is dependent on the diaphragm construction (i.e., its materials and geometry) and on the actuator. This resonance frequency then changes due to the static deflection of the diaphragm caused by the applied pressure. The frequency shift is used as the output signal of the piezoelectric resonance pressure sensor and makes it possible to measure the static pressure. The characteristics of the pressure sensor also depend on the temperature, i.e., the temperature affects both the ceramic structure (its material and geometry) and the properties of the actuator. This work is focused on the ceramic structure, while the actuator will be investigated later.
Go to article

Abstract

Effectiveness of operation of a weapon stabilization system is largely dependent on the choice of a sensor, i.e. an accelerometer. The paper identifies and examines fundamental errors of piezoelectric accelerometers and offers measures for their reduction. Errors of a weapon stabilizer piezoelectric sensor have been calculated. The instrumental measurement error does not exceed 0.1 × 10−5 m/s2. The errors caused by the method of attachment to the base, different noise sources and zero point drift can be mitigated by the design features of piezoelectric sensors used in weapon stabilizers.
Go to article

Abstract

The paper presents the results of an analysis of gaseous sensors based on a surface acoustic wave (SAW) by means of the equivalent model theory. The applied theory analyzes the response of the SAW sensor in the steady state affected by carbon monoxide (CO) in air. A thin layer of WO3 has been used as a sensor layer. The acoustical replacing impedance of the sensor layer was used, which takes into account the profile of the concentration of gas molecules in the layer. Thanks to implementing the Ingebrigtsen equation, the authors determined analytical expressions for the relative changes of the velocity of the surface acoustic wave in the steady state. The results of the analysis have shown that there is an optimum thickness of the layer of CO sensor at which the acoustoelectric effect (manifested here as a change in the acoustic wave velocity) is at its highest. The theoretical results were verified and confirmed experimentally
Go to article

This page uses 'cookies'. Learn more