Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The paper presents a method of measuring the angle of rotation and twist using a tilted fibre Bragg grating (TFBG) periodic structure with a tilt angle of 6◦, written into a single-mode optical fibre. It has been shown that the rotation of the sensor by 180◦ causes a change in the transmission coefficient from 0.5 to 0.84 at a wavelength of 1541.2 nm. As a result of measurements it was determined that the highest sensitivity can be obtained for angles from 30◦ to 70◦ in relation to the basic orientation. The change in the transmission spectrum occurs for cladding modes that change their intensity with the change in the polarization of light propagating through the grating. The same structure can also be used to measure the twist angle. The possibility of obtaining a TFBG twist by 200◦ over a length of 10 mm has been proved. This makes it possible to monitor both the angle of rotation and the twist of an optical fibre with the fabricated TFBG.
Go to article

Abstract

Polarimetric optical fiber sensors based on highly birefringent (HB) polarization-maintaining fibers have focused great interest for last decades. The paper presents a novel modular fiber optic sensing system of potential industrial applications to measure temperature, hydrostatic pressure, and strain that is based on classical HB and photonic crystal fibers and can operate at visible and infrared wavelengths. The main idea of the system is a novel and replaceable fiber-optic head, which allows adjusting the measuring system both to the required range and type (strain, pressure or temperature) of the external measurand. We propose also a new configuration of the fiber optic strain gauge with a free cylinder and an all-fiber built-in analyzer based on the photonic crystal fiber filled with a liquid crystal. Additionally, strain sensitivities of various HB fibers operating at visible and infrared wavelengths range have been measured.
Go to article

Abstract

This paper outlines a measurement method of properties of microstructured optical fibers that are useful in sensing applications. Experimental studies of produced photonic-crystal fibers allow for a better understanding of the principles of energy coupling in photonic-crystal fibers. For that purpose, fibers with different filling factors and lattice constants were produced. The measurements demonstrated the influence of the fiber geometry on the coupling level of light between the cores. For a distance between the cores of 15 μm, a very low level (below 2%) of energy coupling was obtained. For a distance of 13 μm, the level of energy transfer to neighboring cores on the order of 2-4% was achieved for a filling factor of 0.29. The elimination of the energycoupling phenomenon between the cores was achieved by duplicating the filling factor of the fiber. The coupling level was as high as 22% in the case of fibers with a distance between the cores of 8.5 μm. Our results can be used for microstructured-fiber sensing applications and for transmission-channel switching in liquid-crystal multi-core photonic fibers.
Go to article

This page uses 'cookies'. Learn more