Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Barley phylloplane is seriously colonized by Drechslera graminea, the causal agent of leaf stripe disease in the hos. The present study involved the elucidation of alterations induced in the protein content of the host due to Drechslera infection. Naturally growing barley plants were obtained from fields and Drechslera graminea was isolated and identified from diseased plants’ leaves. After identification and preparation of the pure culture, the pathogen was inoculated on plants grown under aseptic and controlled laboratory conditions. Changes in the total soluble cytoplasmic proteins and defense enzymes of the host such as polyphenol oxidase (PPO), peroxidase (POX), phenylalanine lyase (PAL) and tyrosine ammonia lyase (TAL) were observed up to 5 h after inoculation. The results demonstrated a significant effect of the pathogen on the cytoplasmic protein expression of the host as well as in its defense system.
Go to article

Abstract

This study examined the effects of UV-B radiation and allelochemical stress induced by ferulic acid (FA) on the activity of phenylalanine ammonia lyase (PAL; EC 4.3.1.5) at metabolic and molecular levels in two cucumber genotypes differing in tolerance to cold and disease, in order to determine any interaction between stress effects and genotype response. Stresses were applied simultaneously, sequentially, and singly. In both genotypes, several days of UV radiation retarded growth up to 36%. The effect of FA was not significant. The response to a particular stress, including the effect on PAL activation, was enhanced by simultaneous application of the two stresses. PAL transcription was not correlated with the increase of PAL activity. Exposure to UV-B, FA, and combined UV-B and FA was detrimental to both genotypes but to different extents. The response was not correlated with the genotype of cold and disease sensitivity. PAL activity and its transcription seem to be involved in UV and allelochemical stress, but not related to the plants' tolerance of these stresses.
Go to article

Abstract

Root associated bacteria were isolated from Suaeda nudiflora and two isolates were selected for this study: rhizospheric Bacillus megaterium and endophytic Pseudomonas aeruginosa. These isolates were inoculated into maize variety Narmada Moti during its germination. TTC (2, 3, 5-triphenyl tetrazolium chloride) staining was used to confirm the association of the isolates with the maize root. The effects of these root associated bacteria were tested alone and in combinations for cell wall reinforcement and the induction of defense enzymes such as phenylalanine ammonia lyase (PAL) and β-1,3-glucanase in the presence of fungal pathogen Aspergillus niger in maize. The results indicated that the rhizospheric bacteria had a greater fight response to fungal infection than the endophhytic bacteria due to cell wall lignification as well as the rapid induction of higher concentrations of defense related enzymes.
Go to article

This page uses 'cookies'. Learn more