Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The development of in vitro embryo production (IVEP) techniques in Felis catus is a fitting model with potential application to the conservation of endangered felid species. To improve the quality of IVEP techniques an appropriate balance of pro- and antioxidants should be provided. Under in vitro conditions, high levels of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) mRNA provide a defence mechanism against oxidative stress for embryos. In order to improve the development of cat oocytes, the effects of SOD and CAT supplemented to in vitro maturation (IVM) medium and of GPx supplemented to in vitro fertilization (IVF) medium on development and embryo production in vitro were evaluated. Data showed an increase of 70 and 77 % of cleaved embryo and blastocyst formation, respectively, in the experiment with SOD and CAT addition to IVM medium; in the experiment with GPx addition to IVF medium the number of cleaved embryos doubled and the number of embryos increased by 96 %. Therefore, our results were positive and encourage us to continue studies on cat oocytes evaluating the effects of various dosages and combination of antioxidants.
Go to article

Abstract

We examined the effects of feeding by the polyphagous insect Coccus hesperidum on its host plant Nephrolepis biserrata under different intensities of infestation. As an effect of scale insect feeding there were significant changes in the values of parameters reflecting the state of cell membranes. N. biserrata plants reacted to the biotic stress by increasing guaiacol peroxidase activity and decreasing catalase activity. Our data show that these processes play key roles in plant tolerance mechanisms, here the fern’s response to insect feeding. The observed complex reaction of N. biserrata testifies to actively proceeding, complex and very often contrasting mechanisms triggered with the aim of neutralizing the effects of biotic stress and enabling normal cell functioning in plants attacked by scale insects
Go to article

Abstract

We examined whether peroxidase activity in cutting bases and leaves and starch content in cutting bases can be used as rooting phase markers in the elepidote rhododendron cv. ‘Babites Baltais’ (Rhododendron L.). Changes in peroxidase activity in cutting leaves and bases, as well as starch content in cutting bases, were determined in relation to anatomical stages of rhizogenesis in leaf bud cuttings treated with 1% indole-3-butyric acid (IBA+) or without IBA (IBA-). The pattern of change of peroxidase activity was similar in cutting bases and leaves of IBA- leaf bud cuttings. Three phases of adventitious root formation were identified: induction, initiation and expression. During the induction phase peroxidase activity decreased, but no anatomical changes were observed in the cuttings. Peroxidase activity increased in the initiation phase when adventitious root initials were formed. Peroxidase activity decreased during the expression phase when adventitious root primordia developed. The starch content of IBA- leaf bud cuttings decreased during the first few days and then gradually rose to maximum, followed by a sharp reduction and another increase at the end of the experiment. The changes of starch content did not coincide with rooting phases as peroxidase activity did, and cannot be used as a rooting phase marker in rhododendrons. Adventitious root formation did not occur in IBA+ leaf bud cuttings, so distinct rooting phases could not be observed. There was a significant correlation between peroxidase activity in cutting bases and leaves of IBA- leaf bud cuttings. Peroxidase activity in leaves of rhododendron leaf bud cuttings are potentially useful as a marker for rooting phases, but that requires further anatomical and physiological study of rooting in leaf bud cuttings.
Go to article

Abstract

Barley phylloplane is seriously colonized by Drechslera graminea, the causal agent of leaf stripe disease in the hos. The present study involved the elucidation of alterations induced in the protein content of the host due to Drechslera infection. Naturally growing barley plants were obtained from fields and Drechslera graminea was isolated and identified from diseased plants’ leaves. After identification and preparation of the pure culture, the pathogen was inoculated on plants grown under aseptic and controlled laboratory conditions. Changes in the total soluble cytoplasmic proteins and defense enzymes of the host such as polyphenol oxidase (PPO), peroxidase (POX), phenylalanine lyase (PAL) and tyrosine ammonia lyase (TAL) were observed up to 5 h after inoculation. The results demonstrated a significant effect of the pathogen on the cytoplasmic protein expression of the host as well as in its defense system.
Go to article

This page uses 'cookies'. Learn more