Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Today, a cascaded system of position loop, velocity loop and current loop is standard in industrial motion controllers. The exact knowledge of significant parameters in the loops is the basis for the tuning of the servo controllers. A new method to support the commissioning has been developed. It enables the user to identify the moment of inertia as well as the time constant of the closed current loop simultaneously. The method is based on the auto relay feedback experiment by Aström and Hägglund. The model parameters are automatically adjusted according to the time behaviour of the controlled system. For this purpose, the auto relay feedback experiment is combined with the technique of gradual pole compensation. In comparison to other existing methods, this approach has the advantage that a parametric model for the open velocity loop is derived directly.
Go to article

Abstract

This paper considers a method for indirect measuring the vertical displacement of wheels resulting from the road profile, using an inverse parametric data-driven model. Wheel movement is required in variable damping suspension systems, which use an onboard electronic control system that improves ride quality and vehicle handling in typical maneuvres. This paper presents a feasibility study of such an approach which was performed in laboratory conditions. Experimental validation tests were conducted on a setup consisting of a servo-hydraulic test rig equipped with displacement, force and acceleration transducers and a data-acquisition system. The fidelity and adequacy of various parametric SISO model structures were evaluated in the time domain based on correlation coefficient, FPE and AIC criteria. The experimental test results showed that inverse models provide accuracy of inversion, ranging from more than 70% for the ARX model structure to over 90% for the OE model structure.
Go to article

Abstract

In this paper, the MFC sensor and actuators are applied to suppress circular plate vibrations. It is assumed that the system to be regulated is unknown. The mathematical model of the plate was obtained on the base of registration of a system response on a fixed excitation. For the estimation of the system’s behaviour the ARX identification method was used to derive the linear model in the form of a transfer function of the order nine. The obtained model is then used to develop the linear feedback control algorithm for the cancellation of vibration by using the MFC star-shaped actuator (SIMO system). The MFC elements location is dealt with in this study with the use of a laser scanning vibrometer. The control schemes presented have the ability to compute the control effort and to apply it to the actuator within one sampling period. This control scheme is then illustrated through some numerical examples with simulations modelling the designed controller. The paper also describes the experimental results of the designed control system. Finally, the results obtained for the considered plate show that in the chosen frequency limit the designed structure of a closed-loop system with MFC elements provides a substantial vibration suppression.
Go to article

This page uses 'cookies'. Learn more