Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 64
items per page: 25 50 75
Sort by:

Abstract

In this paper, the applications of the multivariate data analysis and optimization on vibration signals from compressors have been tested on the assembly line to identify nonconforming products. The multivariate analysis has wide applicability in the optimization of weather forecasting, agricultural experiments, or, as in this case study, in quality control. The techniques of discriminant analysis and linear program were used to solve the problem. The acceleration and velocity signals used in this work were measured in twenty-five rotating compressors, of which eleven were classified as good baseline compressors and fourteen with manufacturing defects by the specialists in the final acoustic test of the production line. The results obtained with the discriminant analysis separated the conforming and nonconforming groups with a significance level of 0.01, which validated the proposed methodology.
Go to article

Abstract

A transformer is an important part of power transmission and transformation equipment. Once a fault occurs, it may cause a large-scale power outage. The safety of the transformer is related to the safe and stable operation of the power system. Aiming at the problem that the diagnosis result of transformer fault diagnosis method is not ideal and the model is unstable, a transformer fault diagnosis model based on improved particle swarm optimization online sequence extreme learning machine (IPSO-OS-ELM) algorithm is proposed. The improved particle swarmoptimization algorithm is applied to the transformer fault diagnosis model based on the OS-ELM, and the problems of randomly selecting parameters in the hidden layer of the OS-ELM and its network output not stable enough, are solved by optimization. Finally, the effectiveness of the improved fault diagnosis model in improving the accuracy is verified by simulation experiments.
Go to article

Abstract

In the last decade, Poland has become one of the most active markets for unconventional hydrocarbon deposits exploration. At present, there are twenty concessions for the exploration and/or discovery of reserves, including shale gas. The area covered by exploration concessions constitutes ca. 7.5% of the country’s area. Four main stages can be distinguished In the shale gas development and exploitation project: the selection and preparation of the place of development of the wells, hydraulic drilling and fracturing, exploitation (production) and marketing, exploitation suppression and land reclamation. In the paper, the concept of cost analysis of an investment project related to the exploration and development of a shale gas field/area was presented. The first two stages related to the preparatory work, carried out on the selected site, as well as drilling and hydraulic fracturing were analyzed. For economic reasons, the only rational way to make shale gas reserves available is to use horizontal drilling, either singly or in groups. The number of drilling pads covering the concession area is a fundamental determinant of the development cost of the deposit. In the paper, the results of the cost analysis of various types of reaming method with an area of 25,000,000 m2 were presented. Cost estimates were prepared for two variants: group drilling for three types of drilling pads: with three, five and seven wells and for single wells. The results show that, as the number of horizontal wells increases, the total cost of the development of the deposit is reduced. For tree-wells pad, these costs are 7% lower than in the second variant, for five-well pads they are 11% lower, and for seven-well pads they are 11.5% smaller than in the second variant. Authors, using applied methodology, indicate the direction of further research that will enable the optimization of shale gas drilling operations.
Go to article

Abstract

This article considers designing of a renewable electrical power generation system for self-contained homes away from conventional grids. A model based on a technique for the analysis and evaluation of two solar and wind energy sources, electrochemical storage and charging of a housing area is introduced into a simulation and calculation program that aims to decide, based on the optimized results, on electrical energy production system coupled or separated from the two sources mentioned above that must be able to ensure a continuous energy balance at any time of the day. Such system is the most cost-effective among the systems found. The wind system adopted in the study is of the low starting speed that meets the criteria of low winds in the selected region under study unlike the adequate solar resource, which will lead to an examination of its feasibility and profitability to compensate for the inactivity of photovoltaic panels in periods of no sunlight. That is a system with fewer photovoltaic panels and storage batteries whereby these should return a full day of autonomy. Two configurations are selected and discussed. The first is composed of photovoltaic panels and storage batteries and the other includes the addition of a wind system in combination with the photovoltaic system with storage but at a higher investment cost than the first. Consequently, this result proves that is preferable to opt for a purely photovoltaic system supported by the storage in this type of site and invalidates the interest of adding micro wind turbines adapted to sites with low wind resources.
Go to article

Abstract

Games are among problems that can be reduced to optimization, for which one of the most universal and productive solving method is a heuristic approach. In this article we present results of benchmark tests on using 5 heuristic methods to solve a physical model of the darts game. Discussion of the scores and conclusions from the research have shown that application of heuristic methods can simulate artificial intelligence as a regular player with very good results.
Go to article

Abstract

This paper presents the idea of increasing the effectiveness of slag decopperisation in an electric furnace in the "Głogów II" Copper Smelter by replacing the currently added CaCO3with a less energy-intensive technological additive. As a result of this conversion, one may expect improved parameters of the process, including process time or power consumption per cycle. The incentives to optimize the process are the benefits of increasing copper production in the company and the growing global demand for this metal. The paper also describes other factors that may have a significant impact on the optimization of the copper production process. Based on the literature analysis, a solution has been developed that improves the copper production process. The benefits of using a new technology additive primarily include increased share of copper in the alloy, reduced production costs, reduced amount of power consumed per cycle and reduced time it takes to melt. At the conclusion of the paper, the issues raised are highlighted, stressing that mastering the slag slurry process in electric furnaces requires continuous improvement.
Go to article

Abstract

The problem that this paper investigates, namely, optimization of overlay computing systems, follows naturally from growing need for effective processing and consequently, fast development of various distributed systems. We consider an overlay-based computing system, i.e., a virtual computing system is deployed on the top of an existing physical network (e.g., Internet) providing connectivity between computing nodes. The main motivation behind the overlay concept is simple provision of network functionalities (e.g., diversity, flexibility, manageability) in a relatively cost-effective way as well as regardless of physical and logical structure of underlying networks. The workflow of tasks processed in the computing system assumes that there are many sources of input data and many destinations of output data, i.e., many-to-many transmissions are used in the system. The addressed optimization problem is formulatedin the form of an ILP (Integer Linear Programing) model. Since the model is computationally demanding and NP-complete, besides the branch-and-bound algorithm included in the CPLEX solver, we propose additional cut inequalities. Moreover, we present and test two effective heuristic algorithms: tabu search and greedy. Both methods yield satisfactory results close to optimal.
Go to article

Abstract

The 802.11ax standard final specification is expected in 2019, however first parameters are just released. The target of the new standard is four times improvement of the average throughput within the given area. This standard is dedicated for usage in dense environment such as stadiums, means of municipal communication, conference halls and others. The main target is to support many users at the same time with the single access point. The question arises if the new standard will have higher throughput then previous ones in the single user mode. The author calculated the maximal theoretical throughput of the 802.11ax standard and compared the results with the throughput of older 802.11 standards such as 802.11n and 802.11ac. The new he-wifi-network example included in the ns-3.27 release of the NS-3 simulator was used to simulate the throughput between the access point and the user terminal. The results indicate that in some conditions the 802.11ac standard has higher throughput than the new 802.11ax standard.
Go to article

Abstract

Mining ventilation should ensure in the excavations required amount of air on the basis of determined regulations and to mitigate various hazards. These excavations are mainly: longwalls, function chambers and headings. Considering the financial aspect, the costs of air distribution should be as low as possible and due to mentioned above issues the optimal air distribution should be taken into account including the workers safety and minimization of the total output power of main ventilation fans. The optimal air distribution is when the airflow rate in the mining areas and functional chambers are suitable to the existing hazards, and the total output power of the main fans is at a minimal but sufficient rate. Restructuring of mining sector in Poland is usually connected with the connection of different mines. Hence, dependent air streams (dependent air stream flows through a branch which links two intake air streams or two return air streams) exist in ventilation networks of connected mines. The zones of intake air and return air include these air streams. There are also particular air streams in the networks which connect subnetworks of main ventilation fans. They enable to direct return air to specified fans and to obtain different airflows in return zone. The new method of decreasing the costs of ventilation is presented in the article. The method allows to determine the optimal parameters of main ventilation fans (fan pressure and air quantity) and optimal air distribution can be achieved as a result. Then the total output power of the fans is the lowest which makes the reduction of costs of mine ventilation. The new method was applied for selected ventilation network. For positive regulation (by means of the stoppings) the optimal air distribution was achieved when the total output power of the fans was 253.311 kW and for most energy-intensive air distribution it was 409.893 kW. The difference between these cases showed the difference in annual energy consumption which was 1 714 MWh what was related to annual costs of fan work equaled 245 102 Euro. Similar values for negative regulation (by means of auxiliary fans) were: the total output power of the fans 203.359 kW (optimal condition) and 362.405 kW (most energy-intensive condition). The difference of annual energy consumption was 1 742 MWh and annual difference of costs was 249 106 Euro. The differences between optimal airflows considering positive and negative regulations were: the total output power of fans 49.952 kW, annual energy consumption 547 MWh, annual costs 78 217 Euro.
Go to article

Abstract

Grain refining and modification are common foundry practice for improving properties of cast Al-Si alloys. In general, these types of treatments provide better fluidity, decreased porosity, higher yield strength and ductility. However, in practice, there are still some discrepancies on the reproducibility of the results from grain refining and effect of the refiner’s additions. Several factors include the fading effect of grain refinement and modifiers, inhomogeneous dendritic structure and non-uniform eutectic modification. In this study, standard ALCAN test was used by considering Taguchi’s experimental design techniques to evaluate grain refinement and modification efficiency. The effects of five casting parameters on the grain size have been investigated for A357 casting alloy. The results showed that the addition of the grain refiner was the most effective factor on the grain size. It was found that holding time, casting temperature, alloy type and modification with Sr were less effective over grain refinement.
Go to article

Abstract

This paper presents a methodology for contact detection between convex quadric surfaces using its implicit equations. With some small modifications in the equations, one can model superellipsoids, superhyperboloids of one or two sheets and supertoroids. This methodology is to be implemented on a multibody dynamics code, in order to simulate the interpenetration between mechanical systems, particularly, the simulation of collisions with motor vehicles and other road users, such as cars, motorcycles and pedestrians. The contact detection of two bodies is formulated as a convex nonlinear constrained optimization problem that is solved using two methods, an Interior Point method (IP) and a Sequential Quadratic Programming method (SQP), coded in MATLAB and FORTRAN environment, respectively. The objective function to be minimized is the distance between both surfaces. The design constraints are the implicit superquadrics surfaces equations and operations between its normal vectors and the distance itself. The contact points or the points that minimize the distance between the surfaces are the design variables. Computational efficiency can be improved by using Bounding Volumes in contact detection pre-steps. First one approximate the geometry using spheres, and then Oriented Bounding Boxes (OBB). Results show that the optimization technique suits for the accurate contact detection between objects modelled by implicit superquadric equations.
Go to article

Abstract

This paper compares selected optimization-based methods for the analysis of multibody systems with redundant constraints. The following numerical schemes are examined: direct integration method, Udwadia-Kalaba formulation, two types of least-squares block solution method and Udwadia-Phohomsiri formulation. In order to compare efficiency of the algorithms, a series of simulations is performed on two exemplary McPherson struts. In the first variant, the mechanism has no redundant constraints whereas the other is overconstrained. Three constraint stabilization schemes are also compared in terms of integration errors.
Go to article

Abstract

An optimal sensor placement methodology is implemented and herein proposed for SHM model-assisted design and analysis purposes. The kernel of this approach analysis is a genetic-based algorithm providing the sensor network layout by optimizing the probability of detection (PoD) function while, in this preliminary phase, a classic strain energy approach is adopted as well established damage detection criteria. The layout of the sensor network is assessed with respect to its own capability of detection, parameterized through the PoD. A distributed fiber optic strain sensor is adopted in order to get dense information of the structural strain field. The overall methodology includes an original user-friendly graphical interface (GUI) that reduces the time-to-design costs needs. The proposed methodology is preliminarily validated for isotropic and anisotropic elements.
Go to article

Abstract

Zinc plant residue is a hazardous waste which contains high quantity of nickel and other valuable metals. Process parameters such as reaction time, acid concentration, solid-liquid ratio, particle size, stirring speed and temperature for nickel extraction from this waste were optimized using factorial design. Main effects and their interactions were obtained by the analysis of variance ANOVA. Empirical regression model was obtained and used to predict nickel extraction with satisfactory results and to describe the relationship between the predicted results and the experiment results. The important parameters for maximizing nickel extraction were identifi ed to be a leaching time solid-liquid ratio and acid concentration. It was found that above 90% of nickel could be extracted in optimum conditions.
Go to article

Abstract

In this work, response surface optimization strategy was employed to enhance the biodegradation process of fresh palm oil mill effluent (POME) by Aspergillus niger and Trichoderma virens. A central composite design (CCD) combined with response surface methodology (RSM) were employed to study the effects of three independent variables: inoculum size (%), agitation rate (rpm) and temperature (°C) on the biodegradation processes and production of biosolids enriched with fungal biomass protein. The results achieved using A. niger were compared to those obtained using T. virens. The optimal conditions for the biodegradation processes in terms of total suspended solids (TSS), turbidity, chemical oxygen demand (COD), specific resistance to filtration (SRF) and production of biosolids enriched with fungal biomass protein in fresh POME treated with A. niger and T. virens have been predicted by multiple response optimization and verified experimentally at 19% (v/v) inoculum size, 100 rpm, 30.2°C and 5% (v/v) inoculum size, 100 rpm, 33.3°C respectively. As disclosed by ANOVA and response surface plots, the effects of inoculum size and agitation rate on fresh POME treatment process by both fungal strains were significant.
Go to article

Abstract

The paper deals with linear circuits synthesis with periodic parameters. It was proved that the time-varying voltages and currents of inner branches of such circuits can be calculated using linear recursive equations with periodic coefficients if signals on port are given. The stability theorem of periodic solution was formulated. Hereby described the synthesis problems appear when compensation of power supply systems is considered.
Go to article

Abstract

In the paper the squared voltage-current functionals are minimized, which represent the global power losses in the network. In that way it is possible to find the voltage-current distributions on the net without the use of immitance operators and basing only on the Kirchhoff laws. Farther the individual branch parameters are defined in the syntheses process. Many optimal power analysis examples are also shown to illustrate the thesis included in the paper.
Go to article

This page uses 'cookies'. Learn more