Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The paper presents the method and results of measurements carried out at four secular points: P, — Wilczekodden, P2 — Hyttevika, P3 — Gashamna and P4 — Treskelodden. No essential changes were found in the distribution of the anomalous field ΔT with respect to the results of observations made in 1979.
Go to article

Abstract

The paper deals with the problems of designing observers and unknown input observers for discrete-time Lipschitz non-linear systems. In particular, with the use of the Lyapunov method, three different convergence criteria of the observer are developed. Based on the achieved results, three different design procedures are proposed. Then, it is shown how to extend the proposed approach to the systems with unknown inputs. The final part of the paper presents illustrative examples that confirm the effectiveness of the proposed techniques. The paper also presents a MATLAB® function that implements one of the design procedures.
Go to article

Abstract

A complete parametric approach is proposed for the design of the Luenberger type function Kx observers for descriptor linear systems. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, parametric expressions for all the coefficient matrices of the observer are derived. The approach provides all the degrees of design freedom, which can be utilized to achieve some additional design requirements. An illustrative example shows the effect of the proposed approach.
Go to article

Abstract

This paper presents a robust control technique for small-scale unmanned helicopters to track predefined trajectories (velocities and heading) in the presence of bounded external disturbances. The controller design is based on the linearized state-space model of the helicopter. The multivariable dynamics of the helicopter is divided into two subsystems, longitudinallateral and heading-heave dynamics respectively. There is no strong coupling between these two subsystems and independent controllers are designed for each subsystem. The external disturbances and model mismatch in the longitudinal-lateral subsystem are present in all (matched and mismatched) channels. This model mismatch and external disturbances are estimated as lumped disturbances using extended disturbance observer and an extended disturbance observer based sliding mode controller is designed for it to counter the effect of these disturbances. In the case of heading-heave subsystem, external disturbances and model mismatch only occur in matched channels so a second order sliding mode controller is designed for it as it is insensitive to matched uncertainties. The control performance is successfully tested in Simulink.
Go to article

Abstract

This research presents a comparative study for maximum power point tracking (MPPT) methodologies for a photovoltaic (PV) system. A novel hybrid algorithm golden section search assisted perturb and observe (GSS-PO) is proposed to solve the problems of the conventional PO (CPO). The aim of this new methodology is to boost the efficiency of the CPO. The new algorithm has a very low convergence time and a very high efficiency. GSS-PO is compared with the intelligent nature-inspired multi-verse optimization (MVO) algorithm by a simulation validation. The simulation study reveals that the novel GSS-PO outperforms MVO under uniform irradiance conditions and under a sudden change in irradiance.
Go to article

This page uses 'cookies'. Learn more