Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The aim of this study was to verify the hypothesis postulating that the supplementation of turkey diets with Cu nanoparticles can lower dietary inclusion levels of Cu without compromising the growth rate and antioxidant status of turkeys. The experiment was carried out on 648 one-day-old Hybrid Converter turkeys divided into 6 groups with 6 replicates per group, in a two-factorial design with 3 dietary inclusion levels of Cu (20, 10 and 2 mg/kg) and 2 dietary sources of Cu - copper sulfate (Cu-SUL) and Cu nanoparticles (Cu-NP). At 42 days of age, blood samples were collected from 2 birds per replicate (12 birds per group), after slaughter livers were collected for analyses. Blood and liver samples were assayed for: Cu, Zn, Ca, P, Mg, GLU, TP, ALB, UREA, TAG, TC, UA, ALT, AST, ALT, GGT, ALP, SOD, GPx, CAT, VIT C, FRAP, GSH+GSSG, LOOH, MDA. The results of this experiment demonstrate that a decrease in the dietary inclusion levels of Cu from 10 mg/kg to 2 mg/kg does not compromise the growth performance of turkeys, but weakens antioxidant defense mechanisms. A Cu dose of 20 mg/kg induces oxidation reactions and has a much more inhibitory effect on the antioxidant defense system than dietary Cu content of 2 mg/kg. In turkeys, dietary supplementation with Cu-NP has a more beneficial effect on carbohydrate metabolism and antioxidant status compared with Cu-SUL. The results of analyses examining the antioxidant and metabolic status of young turkeys indicate that 10 mg/kg is the optimal dietary inclusion level of Cu.
Go to article

Abstract

The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs) (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide) that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids), or they can adsorb environmental pollutants (heavy metal ions, organic compounds). Nanosilver (nAg) is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs) demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates) or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.
Go to article

This page uses 'cookies'. Learn more