Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

In this study, a preliminary evaluation was made of the applicability ofthe signalsof the cutting forces, vibration and acoustic emission in diagnosis of the hardness and microstructure of ausferritic ductile iron and tool edge wear rate during its machining. Tests were performed on pearlitic-ferritic ductile iron and on three types of ausferritic ductile iron obtained by austempering at 400, 370 and 320⁰C for 180 minutes. Signals of the cutting forces (F), vibration (V) and acoustic emission (AE) were registered while milling each type of the cast iron with a milling cutter at different degrees of wear. Based on individual signals from all the sensors, numerous measures were determined such as e.g. the average or maximum signal value. It was found that different measures from all the sensors tested depended on the microstructure and hardness of the examined material, and on the tool condition. Knowing hardness of the material and the cutting tool edge condition, it is possible to determine the structure of the material .Simultaneous diagnosis of microstructure, hardness, and the tool condition is probably feasible, but it would require the application of a diagnostic strategy based on the integration of numerous measures, e.g. using neural networks.
Go to article

Abstract

Development of mineral deposits located at significant depth may be carried out by means of vertical shafts. Shaft sinking technology usually requires a number of works to be carried out, including the selection of appropriate excavating techniques adapted to geological and hydrological conditions, including natural hazards. The production technology and the machines used determine the level of sinking costs and execution period. The article discusses the excavating technologies currently used across the world. Then the assumptions, concept and construction of a new generation of shaft sinking system were presented. The proposed new solution of the system and the excavating technology allow for parallel execution of key processes related to winning, loading, transport and shaft wall-side lining, which significantly increases the progress of sinking. The shaft sinking system was created by scientists from AGH in cooperation with KOPEX – Przedsiębiorstwo Budowy Szybów S. A. and Instytut Techniki Górniczej KOMAG.
Go to article

Abstract

The article presents the issue of calibration and verification of an original module, which is a part of the robotic turbojet engines elements processing station. The task of the module is to measure turbojet engine compressor blades geometric parameters. These type of devices are used in the automotive and the machine industry, but here we present their application in the aviation industry. The article presents the idea of the module, operation algorithm and communication structure with elements of a robot station. The module uses Keyence GT2-A32 contact sensors. The presented information has an application nature. Functioning of the module and the developed algorithm has been tested, the obtained results are satisfactory and ensure sufficient process accuracy. Other station elements include a robot with force control, elements connected to grinding such as electrospindles, and security systems.
Go to article

Abstract

The paper presents the production problems related to casting using precision casting methods. The essential adverse effect of the casting process is the presence of burrs understood as oversize material necessary to remove the next finishing operations. In addition, the surfaces of the cast often characterized by a porous structure. One of the methods to improve the smoothness of the area proposed by the authors is the use of vibro-abrasive finishing. This type of treatment is widely used in the treatment of finishing small objects as well as complex shapes. Objects in the form of casting in the first step was treated with aggressive deburring polyester matrix abrasive media. The second stage was polishing, with using smoothing porcelain media. The study evaluated the effect of vibro-abrasive machining typical cast on the basic parameters of the geometric structure of the surface. Observations using optical microscope Nicon Eclipse MA 200 compared changes in surface microstructure and the effect of deburring. Clearly we can say that vibro-abrasive machining an effective way of reducing the size of burrs, smoothing and lightening the surface of objects made by casting.
Go to article

Abstract

Automation of machining operations, being result of mass volume production of components, imposes more restrictive requirements concerning mechanical properties of starting materials, inclusive of machinability mainly. In stage of preparation of material, the machinability is influenced by such factors as chemical composition, structure, mechanical properties, plastic working and heat treatment, as well as a factors present during machining operations, as machining type, cutting parameters, material and geometry of cutting tools, stiffness of the system: workpiece – machine tool – fixture and cutting tool. In the paper are presented investigations concerning machinability of the EN AC-AlSi9Cu3(Fe) silumin put to refining, modification and heat treatment. As the parameter to describe starting condition of the alloy was used its tensile strength Rm. Measurement of the machining properties of the investigated alloy was performed using a reboring method with measurement of cutting force, cutting torque and cutting power. It has been determined an effect of the starting condition of the alloy on its machining properties in terms of the cutting power, being indication of machinability of the investigated alloy. The best machining properties (minimal cutting power - Pc=48,3W) were obtained for the refined alloy, without heat treatment, for which the tensile strength Rm=250 MPa. The worst machinability (maximal cutting power Pc=89,0W) was obtained for the alloy after refining, solutioning at temperature 510 o C for 1,5 hour and aged for 5 hours at temperature 175 o C. A further investigations should be connected with selection of optimal parameters of solutioning and ageing treatments, and with their effect on the starting condition of the alloy in terms of improvement of both mechanical properties of the alloy and its machining properties, taking into consideration obtained surface roughness.
Go to article

Abstract

The article presents an example of finishing treatment for aluminum alloys with the use of vibration machining, with loose abrasive media in a closed tumbler. For the analysis of selected properties of the surface layer prepared flat samples of aluminum alloy PA6/2017 in the state after recrystallization. The samples in the first stage were subjected to a treatment of deburring using ceramic media. In a second step polishing process performed with a strengthening metal media. In addition, for comparative purposes was considered. only the case of metal polishing. The prepared samples were subjected to hardness tests and a tangential tensile test. As a result of finishing with vibratory machining, it was possible to remove burrs, flash, rounding sharp edges, smoothing and lightening the surface of objects made. The basic parameters of the surface geometry were obtained using the Talysurf CCI Lite - Taylor Hobson optical profiler. As a result of the tests it can be stated that the greatest reduction of surface roughness and mass loss occurs in the first minutes of the process. Mechanical tests have shown that the most advantageous high values of tensile strength and hardness are obtained with two-stage vibration treatment, - combination of deburring and polishing. Moreover the use of metal media resulted in the strengthening of the surface by pressure deburring with metal media.
Go to article

Abstract

This paper deals with production of safety inlay for steam locomotive valve by the Patternless Process method. For the moulds creation was used moulding mixtures of II. generation, whereas binder was used a water glass. CNC miller was used for creation of mould cavity. Core was created also by milling into block made of moulding compound. In this article will be presented also making of 3D model, setting of milling tool paths and parameters for milling.
Go to article

Abstract

Electrical Discharge Machining (EDM) process with copper tool electrode is used to investigate the machining characteristics of AISI D2 tool steel material. The multi-wall carbon nanotube is mixed with dielectric fluids and its end characteristics like surface roughness, fractal dimension and metal removal rate (MRR) are analysed. In this EDM process, regression model is developed to predict surface roughness. The collection of experimental data is by using L9 Orthogonal Array. This study investigates the optimization of EDM machining parameters for AISI D2 Tool steel using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Analysis of variance (ANOVA) and F-test are used to check the validity of the regression model and to determine the significant parameter affecting the surface roughness. Atomic Force Microscope (AFM) is used to capture the machined image at micro size and using spectroscopy software the surface roughness and fractal dimensions are analysed. Later, the parameters are optimized using MINITAB 15 software, and regression equation is compared with the actual measurements of machining process parameters. The developed mathematical model is further coupled with Genetic Algorithm (GA) to determine the optimum conditions leading to the minimum surface roughness value of the workpiece.
Go to article

This page uses 'cookies'. Learn more