Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 52
items per page: 25 50 75
Sort by:

Abstract

Given a linear discrete system with initial state x0 and output function yi , we investigate a low dimensional linear systemthat produces, with a tolerance index ǫ, the same output function when the initial state belongs to a specified set, called ǫ-admissible set, that we characterize by a finite number of inequalities. We also give an algorithm which allows us to determine an ǫ-admissible set.
Go to article

Abstract

The paper addresses the problem of constrained pole placement in discrete-time linear systems. The design conditions are outlined in terms of linear matrix inequalities for the Dstable ellipse region in the complex Z plain. In addition, it is demonstrated that the D-stable circle region formulation is the special case of by this way formulated and solved pole placement problem. The proposed principle is enhanced for discrete-lime linear systems with polytopic uncertainties.
Go to article

Abstract

The subject of the paper is the analysis of factors determining the value of multi-entity organizations in the energy sector and their ranking according to the degree of impact on this value. For this purpose, statistical methods were used, which are best suited to determine the order of diagnostic features according to a specific criterion. The survey covered companies from the Polish energy sector, while the process itself is based on aggregated data, which represents the financial data of capital groups currently operating in the Polish energy sector. The first part of the article presents a short description of the Polish energy sector, paying particular attention to the organizational structure of the sector, i.e. companies operating on the domestic energy market. The nature of a multi-entity enterprise as a typical economic unit in the sector is described. The second part of the article describes the assumptions of multidimensional comparative analysis (MCA) as a tool for comparing multifunctional units. The MCA makes it possible to find the most important parameters or indicators having the greatest impact on the value of a multi-entity organization, i.e. a capital group. The survey covered four companies from the Polish energy sector: TAURON Polska Energia SA, ENEA SA, ENERGA SA and PGE Polska Grupa Energetyczna SA. The study with the use of MCA was conducted in three stages: - in the first stage, on the basis of information contained in the financial statements, a matrix of diagnostic features was created, describing the financial condition of the examined entity, - in the second stage, the values of diagnostic variables were normalized/unified; two methods of normalization were applied: the method of standardization and zero unitization, - in the third stage, the diagnostic variables were grouped using two methods: the model measure of Hellwig’s development and the non-standard measure of development. The results of the analysis are illustrated by tables and figures.
Go to article

Abstract

The study makes an attempt to model a complete vibrating guitar including its non-linear features, specifically the tension-compression of truss rod and tension of strings. The purpose of such a model is to examine the influence of design parameters on tone. Most experimental studies are flawed by uncertainties introduced by materials and assembly of an instrument. Since numerical modelling of instruments allows for deterministic control over design parameters, a detailed numerical model of folk guitar was analysed and an experimental study was performed in order to simulate the excitation and measurement of guitar vibration. The virtual guitar was set up like a real guitar in a series of geometrically non-linear analyses. Balancing of strings and truss rod tension resulted in a realistic initial state of deformation, which affected the subsequent spectral analyses carried out after dynamic simulations. Design parameters of the guitar were freely manipulated without introducing unwanted uncertainties typical for experimental studies. The study highlights the importance of acoustic medium in numerical models.
Go to article

Abstract

In this paper we present results of systematic and comprehensive simulation analysis of the Tsao & Safonov unfalsified controller for complex robot manipulators. In particular, we show that the controller falsification procedure yields the closedloop unfalsified controller, which accomplishes the control objective, within a finite and relatively short time interval with the number of invocations of linear programming based unfalsified controller selection procedure being relatively small. We also present some conclusions resulting from the investigation of the e#27;ect of such elements as manipulator structure complexity, prior knowledge about disturbances, reference trajectory and assigned closed-loop spectrum on unfalsified controller performance and computational complexity.
Go to article

Abstract

In this paper, the second-generation CMOS currentcontrolled- current-conveyor based on differential pair of operational transconductance amplifier has been researched and presented. Since the major improvement of its parasitic resistance at x-port can be linearly controlled by an input bias current, the proposed building block is then called “The Second-Generation Electronically-tunable Current-controlled Current Conveyor” (ECCCI). The applications are demonstrated in form of both 2 quadrant and 4 quadrant current-mode signal multiplier circuits. Characteristics of the proposed ECCCII and its application are simulated by the PSPICE program from which the results are proved to be in agreement with the theory.
Go to article

Abstract

The results of testing of the selected group of wax mixtures used in the investment casting technology, are presented in the paper. The measurements of the kinetics of the mixtures shrinkage and changes of viscous-plastic properties as a temperature function were performed. The temperature influence on bending strength of wax mixtures was determined.
Go to article

Abstract

The present work focuses on the modeling and analysis of mechanical properties of structural steel. The effect of major alloying elements namely carbon, manganese and silicon has been investigated on mechanical properties of structural steel. Design of experiments is used to develop linear models for the responses namely Yield strength, Ultimate tensile strength and Elongation. The experiments have been conducted as per the full factorial design where all process variables are set at two levels. The main effect plots showed that the alloying elements Manganese and Silicon have positive contribution on Ultimate tensile strength and Yield strength. However, Carbon and Manganese showed more contribution as compared to Silicon. All three alloying elements are found to have negative contribution towards the response- Elongation. The present work is found to be useful to control the mechanical properties of structural steel by varying the major alloying elements. Minitab software has been used for statistical analysis. The linear regression models have been tested for the statistical adequacy by utilizing ANOVA and statistical significance test. Further, the prediction capability of the developed models is tested with the help of test cases. It is found that all linear regression models are found to be statistically adequate with good prediction capability. The work is useful to foundrymen to choose alloying elements composition to get desirable mechanical properties.
Go to article

Abstract

The paper presents validation tests for method which is used for the evaluation of the statistical distribution parameters for 3D particles’ diameters. The tested method, as source data, uses chord sets which are registered from a random cutting plane placed inside a sample space. In the sample space, there were individually generated three sets containing 3D virtual spheres. Each set had different Cumulative Distribution Function (CDF3) of the sphere diameters, namely: constant radius, normal distribution and bimodal distribution as a superposition of two normal distributions. It has been shown that having only a chord set it is possible, by using the tested method, to calculate the mean value of the outer sphere areas. For the sets of data, a chord method generates quite large errors for around 10% of the smallest nodules in the analysed population. With the increase of the nodule radii, the estimation errors decrease. The tested method may be applied to foundry issues e.g. for the estimation of gas pore sizes in castings or for the estimation of nodule graphite sizes in ductile cast iron.
Go to article

Abstract

The analysis of the positivity and stability of linear electrical circuits by the use of state-feedbacks is addressed. Generalized Frobenius matrices are proposed and their properties are investigated. It is shown that if the state matrix of an electrical circuit has generalized Frobenius form then the closed-loop system matrix is not positive and asymptotically stable. Different cases of modification of the positivity and stability of linear electrical circuits by state-feedbacks are discussed and necessary conditions for the existence of solutions to the problem are established.
Go to article

Abstract

Simple necessary and sufficient conditions for robust stability of the positive linear discrete-time systems with delays with linear uncertainty structure in two cases: 1) unity rank uncertainty structure, 2) non-negative perturbation matrices, are established. The proposed conditions are compared with the suitable conditions for the standard systems. The considerations are illustrated by numerical examples.
Go to article

Abstract

A new method for computation of positive realizations of given transfer matrices of fractional linear continuous-time linear systems is proposed. Necessary and sufficient conditions for the existence of positive realizations of transfer matrices are given. A procedure for computation of the positive realizations is proposed and illustrated by examples.
Go to article

Abstract

This work presents the studies on the electrochemical process of thin palladium layers formation onto electrodeposited cobalt coatings. The suggested methodology consists of the preparation of thick and smooth cobalt substrate via galvanostatic electrodeposition. Cobalt coatings were prepared under different cathodic current density conditions from acidic bath containing cobalt sulphate and addition of boric acid. Obtained cobalt layers were analyzed by x-ray diffraction to determine their phase composition. Freshly prepared cobalt coatings were modificated by the galvanic displacement method in PdCl2 solution, to obtain smooth and compact Pd layer. The comparison of electrocatalytic properties of Co coatings with Co/Pd ones enabled to determine the influence of Palladium presence in cathodic deposits on the hydrogen evolution process.
Go to article

Abstract

In this paper, pole placement-based design and analysis of a free piston Stirling engine (FPSE) is presented and compared to the well-defined Beale number design technique. First, dynamic and thermodynamic equations governing the engine system are extracted. Then, linear dynamics of the free piston Stirling engine are studied using dynamic systems theory tools such as root locus. Accordingly, the effects of variations of design parameters such as mass of pistons, stiffness of springs, and frictional damping on the locations of dominant closed-loop poles are investigated. The design procedure is thus conducted to place the dominant poles of the dynamic system at desired locations on the s-plane so that the unstable dynamics, which is the required criterion for energy generation, is achieved. Next, the closed-loop poles are selected based on a desired frequency so that a periodical system is found. Consequently, the design parameters, including mass and spring stiffness for both power and displacer pistons, are obtained. Finally, the engine power is calculated through the proposed control-based analysis and the result is compared to those of the experimental work and the Beale number approach. The outcomes of this work clearly reveal the effectiveness of the control-based design technique of FPSEs compared to the well-known approaches such as Beale number.
Go to article

Abstract

The determination of the form of a probability density function (PDF3) of diameters for nodular particles by using a probability density function (PDF2), which form is empirically estimated from cross-sections of these nodules in a metallographic specimen, can be regarded as a special case of Wicksell's corpuscle problem (WCP). The estimation of the PDF3 for the nodular particles provides information about the kinetics of these particles nucleation, and so about the kinetics of their growth. This information is essential for building more accurate mathematical models of the alloy crystallization. In the paper there are presented two derivations of the methods used for the estimation of the PDF3 form. The first method bases on diameters received from a planar cross-section. The second one uses also data from the planar cross-section but not the diameters only chords. Both methods provide practical rules for the analysis of the empirical diameters’ and chord’s size distribution and allow to estimate the mean value of the external surface area of the particles.
Go to article

Abstract

Landfill leachate makes a potential source of ground water pollution. Municipal waste landfill substratum can be used for removal of pollutants from leachate. Model research was performed with use of a sand bed and artificially prepared leachates. Effectiveness of filtration in a bed of specific thickness was assessed based on the total solids content. Result of the model research indicated that the mass of pollutants contained in leachate filtered by a layer of porous soil (mf) depends on the mass of pollutants supplied (md). Determined regression functions indicate agreement with empirical values of variable m′f. The determined regression functions allow for qualitative and quantitative assessment of influence of the analysed independent variables (m′d, l, ω) on values of mass of pollutants flowing from the medium sand layer. Results of this research can be used to forecast the level of pollution of soil and underground waters lying in the zone of potential impact of municipal waste landfill.
Go to article

Abstract

The paper deals with a non-linear problem of long water waves approaching a sloping beach. In order to describe the phenomenon we apply the Lagrange’s system of material variables. With these variables it is much easier to solve boundary conditions, especially conditions on a shoreline. The formulation is based on the fundamental assumption for long waves propagating in shallow water of constant depth that vertical material lines of fluid particles remain vertical during entire motion of the fluid. The analysis is confined to one – dimensional case of unsteady water motion within a ’triangular’ body of fluid. The partial differential equations of fluid motion, obtained by means of a variational procedure, are then substituted by a system of equations resulting from a perturbation scheme with the second order expansion with respect to a small parameter. In this way the original problem has been reduced to a system of linear partial differential equations with variable coefficients. The latter equations are, in turn, substituted by a system of difference equations, which are then integrated in a discrete time space by means of the Wilson-µ method. The procedure developed in this paper may be a convenient tool in analysing non-breaking waves propagating in coastal zones of seas. Moreover, the model can also deliver useful results for cases when breaking of waves near a shoreline may be expected.
Go to article

Abstract

The concept of strong stability is extended for positive and compartmental linear systems. It is shown that: 1) the asymptotically stable positive and compartmental systems are strongly stable if the eigenvalues of the system matrix are distinct, 2) electrical circuits consisting of resistances, capacitances (inductances) and source voltages are strongly stable.
Go to article

Abstract

The paper deals with the problems of designing observers and unknown input observers for discrete-time Lipschitz non-linear systems. In particular, with the use of the Lyapunov method, three different convergence criteria of the observer are developed. Based on the achieved results, three different design procedures are proposed. Then, it is shown how to extend the proposed approach to the systems with unknown inputs. The final part of the paper presents illustrative examples that confirm the effectiveness of the proposed techniques. The paper also presents a MATLAB® function that implements one of the design procedures.
Go to article

Abstract

A new concept (notion) of the practical stability of positive fractional discrete-time linear systems is introduced. Necessary and sufficient conditions for the practical stability of the positive fractional systems are established. It is shown that the positive fractional systems are practically unstable if corresponding standard positive fractional systems are asymptotically unstable.
Go to article

Abstract

New frequency domain methods for stability analysis of linear continuous-time fractional order systems with delays of the retarded type are given. The methods are obtained by generalisation to the class of fractional order systems with delays of the Mikhailov stability criterion and the modified Mikhailov stability criterion known from the theory of natural order systems without and with delays. The study is illustrated by numerical examples of time-delay systems of commensurate and non-commensurate fractional orders.
Go to article

This page uses 'cookies'. Learn more