Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 29
items per page: 25 50 75
Sort by:

Abstract

Introduction: Arthrocentesis has been used in the temporomandibular joint (TMJ) to analyze components of the synovial fluid or as a therapeutic procedure associated or not with the admini- stration of a drug. The rabbit is one of the most commonly used animal species as a model for pathologies that affect the TMJ. The aim of this study was to propose a specific technique to perform arthrocentesis on the rabbit TMJ, emphasizing descriptions of reference points and measurements for a successful puncture without complications. Materials and methods: Fourteen adult rabbits (Oryctolagus cuniculus) were used. The project was approved by the Scientific Ethics Committee of the Universidad de La Frontera (File Nº083/2016). Results: The description of the technique was divided into three steps: 1) Location of the rabbit TMJ, 2) Positioning of the needles in the TMJ, and 3) Passage of fluid through the TMJ. Conclusions: This arthrocen- tesis technique could help to simplify the procedure and give the investigator a guide for joint washing and extraction of synovial fluid in the rabbit TMJ.
Go to article

Abstract

About 1600 joint fractures were measured in tillites of the Upper Hecla Hoek Formation on the southern shore of Bellsund. Measurements were collected in 12 areas between the Renardbreen and Tjörndalen. Ray diagrams and contour diagrams of joint fractures, and contour diagrams of joint fractures after rotation to pre-folding position were made for each area. The preliminary analysis of diagrams indicates 2 conjugated joint sets: ca. 60°—120° and 0°—30°. This joint system is probably older than folding and was originated under ENE—WSW to NE—SW stress.
Go to article

Abstract

These joints are used when the designer and contractor anticipate difficulties during the construction of overlap joints. They were not included in the PN EN 1993‒1‒8 in full scale. Resistance assessment of such joints is presented in accordance with standard rules. The results were compared with the experimental studies carried out at the “Mostostal” Centre; while the former research activities and the legitimacy of the proposed method of assessing the resistance of these joints was confirmed. This is an example of an overlap joint calculation.
Go to article

Abstract

This paper presents a vibration analysis of a multi-link surgical micromanipulator joint, based on its detailed mathematical model. The manipulator’s prototype contains 6 links with the diameter of 8-10 [mm] and with the length of the modules of about 130 [mm]. It is driven by brushless servomotors with worm and planetary gears, for which the total transmission ratio is above 1/10000. Regarding the low efficiency of micro-robot drive systems and its vibrations, a reliable joint model and its performance is crucial for the development of a high-precision control system. To achieve the required accuracy, modelling framework has been enriched with an advanced model of friction. Simulation results are presented and discussed.
Go to article

Abstract

The strength of conveyor belts splices made in mines rarely reaches full belt strength. It consists of a number of factors. The primary is the method of their construction and proper selection of ingredients. The significant impact has also has splice quality covering both keeping proper geometry matched to the belt construction and belts working conditions and adherence to the best practices in the field of technologies of their construction.Difficult conditions in underground mines and pressure on reducing conveyor downtime (avoiding production losses) is reflected by a drop in static and dynamic splices strength. This is confirmed by numerous studies of belt splices strength and fatigue life conducted in the Laboratory of Belt Conveying (LTT) within the framework of research and expert opinions commissioned by belt manufacturers and their users. The consequence of too insufficiently low belt splices strength is their low durability, decreasing reliability and, consequently, higher mining transportation costs. Belt splices are in fact the weakest link in the serial structure which form closed loops of interconnected belt sections working in series of conveyors transporting excavated material in the mine. The article presents the results of simulation analyzes analyses investigating how the increase of belt splices durability may contribute to the reduction of transportation costs in the underground mines.
Go to article

Abstract

A lithological profile and measurements of the orientation and spacings of natural discontinuity planes were carried out in the Górka-Mucharz sandstone excavation (Krosno Beds, Outer Carpathians, Poland). In addition, the density of the discontinuities was assessed by measuring their spacings using oriented digital photographs of the quarry walls. An orthophotomap was also used in assessing the orientation and density of fractures with the tools available in QGIS. It was shown that digital image analysis can be used as an alternative to direct field measurements, especially in situations where access to an outcrop is difficult. The distributions of spacings larger than 40 cm, obtained by direct measurements and based on digital images of the quarry, were comparable. As a consequence, both measurement techniques yielded similar values of the quantity of blocks (QB), which differed by less than 2% for the minimum block volume in the range 0.4-1.0 m3 and by 6-7% for larger blocks. On the other hand, measurements of discontinuity spacings that were taken on the basis of an orthophotomap can only serve to estimate the approximate maximum value of this parameter. However, the use of orthophotomaps gives a more explicit spatial pattern of the main vertical joint sets than direct measurements in the quarry. The analysis results also showed the following: (i) the presence of tectonic disturbances visible at the highest level of the deposit; (ii) higher density of set A fractures with planes deepening in the NE direction and a considerable reduction of the QB parameter, particularly in the peripheral NE and SW parts of the deposit; (iii) differences in the orientation of the discontinuity system between particular beds. The variable density of the discontinuities in the excavation is related to the presence of the faults that limit the Górka-Mucharz deposit.
Go to article

Abstract

This article deals with the problem of determining the resistance of end-plate connections. A nonlinear FEM model of the joint was constructed in order to predict its carrying capacity. A standard code procedure was done as well. The analyses have been done to assess atypical end-plate joints designed and constructed as a part of roof structures.
Go to article

Abstract

This paper presents an approach based on NURBS (non-uniform rational B-splines) to achieve a seismic response surface (SRS) from a group of points obtained by using an analytical model of RC joints. NURBS based on the genetic algorithm is an important mathematical tool and consists of generalizations of Bezier curves and surfaces and B-splines. Generally, the accuracy of the design process of joints depends on the number of control points that are captured in the results of experimental research on real specimens. The values obtained from the specimens are the best tools to use in seismic analysis, though more expensive when compared to values simulated by SRSs. The SRS proposed in this paper can be applied to obtain surfaces that show site effect results on destructions of beam-column joint, taking into account different site conditions for a specific earthquake. The efficiency of this approach is demonstrated by the retrieval of simulated-versus-analytical results.
Go to article

Abstract

A speaker recognition system based on joint factor analysis (JFA) is proposed to improve whispering speakers’ recognition rate under channel mismatch. The system estimated separately the eigenvoice and the eigenchannel before calculating the corresponding speaker and the channel factors. Finally, a channel-free speaker model was built to describe accurately a speaker using model compensation. The test results from the whispered speech databases obtained under eight different channels showed that the correct recognition rate of a recognition system based on JFA was higher than that of the Gaussian Mixture Model-Universal Background Model. In particular, the recognition rate in cellphone channel tests increased significantly.
Go to article

Abstract

A numerical analysis of the initially clamped bolt joint subject to the working pressure is presented in the paper. Special, hexahedral 21- and 28-node isoparametric finite elements have been employed to model the contact zone. In this model, one takes into account loading due to the working pressure in the gap between the gasket and the flange arising as an effect of the progressing joint opening, what has not been considered in recent papers. Nonlinear stiffness characteristics of the bolt and the flange with the gasket are developed. Working pressure corresponding to the critical bolt force resulting in the joint leakage (complete opening between the gasket and the flange) is determined. FE computational results are compared with the available experimental results. The numerical results are presented using the authors' own graphical postprocessor.
Go to article

Abstract

The paper presents the results of research on the modification of the face geometry of the refill friction stir spot welding tool sleeve for welding thin aluminum sheets with an Alclad and an oxide anode coating. The analysis of the impact of such modification on the process perform (tool motion parameters, temperature) and microstructure as well as mechanical strength of the lap joints were analyzed. The tests were carried out using aluminum alloy 2024-T3 sheets with thickness 1.27 mm. For comparative purposes, joints were also made using plates without an Alclad and without anodized coating with using unmodified tool and modified tools with developed 3 variants of face geometry. The samples with the joint were subjected to metallographic and strength tests. It has been shown that the use of modified geometry has a decisive influence on the performance of the process and the effect of softening and mixing of materials in the zone of point connection.
Go to article

Abstract

Dynamic Mine disasters can be induced by the instability and failure of a composite structure of rock and coal layers during coal mining. Coal seam contains many native defects, severely affecting the instability and failure of the compound structure. In this study, the effects of coal persistent joint on the strength and failure characteristics of coal-rock composite samples were evaluated using PFC2D software. The results show that with the increase of included angle α between the loading direction and joint plane direction, the uniaxial compressive stress (UCS) and peak strain of composite samples first decrease and then gradually increase. The elastic moduli of composite samples do not change obviously with α. The peak strain at α of 45° is the lowest, and the UCS at α of 30° is the smallest. This is inconsistent with theoretical analysis of lowest UCS at α of 45°. This is because that the local stress concentration caused by the motion inconformity of composite samples may increase the average axial stress of upper wall in PFC2D software. Moreover, the coal persistent joint promotes the transformation from the unstable crack expansion to the macro-instability of composite samples, especially at α of 30° and 45°. The majority of failures for composite samples occur within the coal, and no obvious damage is observed in rock. Their failure modes are shear failure crossing or along the coal persistent joint. The failure of composite sample at α of 30° is a mixed failure, including the shear failure along the persistent joint in coal and tensile failure of rock induced by the propagation of coal persistent joint.
Go to article

Abstract

The main topic of this article is apes’ intentional behaviour. I consider the Michael Tomasello’s concept of intentionality. I outline how different levels of intentionality presented by Tomasello could be applied to apes’ behaviour. To do so I examine few experiments and observations (in natural conditions) of apes’ behaviour and try to apply Tomasello’s intentionality concepts. My main concern is the possibility of group and shared intentionality in ape communities, which could suggest that there is some kind of culture oriented behaviour in non-human animals.
Go to article

Abstract

This elaboration presents the method of virtual positioning of the construction of an endoprosthesis of hip joint in a patient’s pelvis and femoral bone, reconstructed on the basis of imaging obtained from computer tomography. It is based on the matching of an implant to individual anatomical-biomechanical conditions. The method is established on the following procedures: diagnostic, spatial modeling, virtual measuring and targeted biometrological application for the model of bone structures. The final effect of the completed procedures is selection and optimal positioning of the endoprosthesis of hip joint before a planned medical intervention. The determined geometrical parameters of bone structures and settled positioning of the endoprosthesis can create data for the system of computer navigation.
Go to article

Abstract

Presented in this paper are results of an experimental investigation on the rivet flexibility and load transmission in a riveted lap joint representative for the aircraft fuselage. The test specimens consisted of two aluminium alloy Alclad sheets joined with 3 rows of rivets. Two different squeeze forces were applied to install the rivets. Rivet flexibility measurements have been performed under constant amplitude fatigue loading using several methods including two original optical techniques developed by the present authors. The axial tractions in the sheets required to determine the rivet flexibility have been derived from strain gauge measurements. In order to eliminate the effect of secondary bending the strain gauges have been bonded at the same locations on the outside and faying surface of the sheet. The experiments enabled an evaluation of the usefulness of various techniques to determine the rivet flexibility. It was observed that, although the measured flexibility was identical for both end rivet rows, the load transfer through either of these rows was different. Previous experimental results by the present authors suggest that behind the non-symmetrical load transfer distribution through the joint are large differences between the rivet hole expansion in the sheet adjacent to the driven rivet head and the sheet under the manufactured head [1]. It has been concluded that commonly used computation procedures according to which the load transfer is only related to the rivet flexibility may lead to erroneous results.
Go to article

Abstract

This paper proposes an analysis of the effect of vertical position of the pivot point of the inverted pendulum during humanoid walking. We introduce a new feature of the inverted pendulum by taking a pivot point under the ground level allowing a natural trajectory for the center of pressure (CoP), like in human walking. The influence of the vertical position of the pivot point on energy consumption is analyzed here. The evaluation of a 3D Walking gait is based on the energy consumption. A sthenic criterion is used to depict this evaluation. A consequent reduction of joint torques is shown with a pivot point under the ground.
Go to article

Abstract

In the present work, a constitutive model of materials undergoing the plastic strain induced phase transformation and damage evolution has been developed. The model is based on the linearized transformation kinetics. Moreover, isotropic damage evolution is considered. The constitutive model has been implemented in the finite element software Abaqus/Explicit by means of the external user subroutine VUMAT. A uniaxial tension test was simulated in Abaqus/Explicit to compare experimental and numerical results. Expansion bellows was also modelled and computed as a real structural element, commonly used at cryogenic conditions.
Go to article

Abstract

The paper presents a dynamic analysis of the damaged masonry building repaired with the Flexible Joint Method. Numerical analysis helped to determine the effect of the applied repairing method on natural frequencies as well as values of stresses and accelerations in the analyzed variants of numerical model. They confirmed efficiency of the proposed repair method.
Go to article

Abstract

Based on the theory of heat transfer, the influence of expansion joints on the temperature and stress distribution of ladle lining is discussed. In view of the current expansion joint, the mathematical model of heat transfer and the three dimensional finite element model of ladle lining brick are established. By analyzing the temperature and stress distribution of ladle lining brick when the expansion joints are in different sizes, the thermal mechanical stress caused by the severe temperature difference can be reduced by the suitable expansion joint of the lining brick during the ladle baking and working process. The analysis results showed that the thermal mechanical stress which is caused by thermal expansion can be released through the 2 mm expansion joint, which is set in the building process. So we can effectively reduce the thermal mechanical stress of the ladle lining, and there is no risk of steel leakage, thus the service life of ladle can be effectively prolonged.
Go to article

Abstract

The Carpathian Orava Basin is a tectonic structure filled with Neogene and Quaternary deposits superimposed on the collision zone between the ALCAPA and European plates. Tectonic features of the south-eastern margin of the Orava Basin and the adjoining part of the fore-arc Central Carpathian Palaeogene Basin were studied. Field observations of mesoscopic structures, analyses of digital elevation models and geological maps, supplemented with electrical resistivity tomography surveys were performed. Particular attention was paid to joint network analysis. The NE-SW-trending Krowiarki and Hruštinka-Biela Orava sinistral fault zones were recognized as key tectonic features that influenced the Orava Basin development. They constitute the north-eastern part of a larger Mur-Mürz-Žilina fault system that separates the Western Carpathians from the Eastern Alps. The interaction of these sinistral fault zones with the older tectonic structures of the collision zone caused the initiation and further development of the Orava Basin as a strike-slip-related basin. The Krowiarki Fault Zone subdivides areas with a different deformation pattern within the sediments of the Central Carpathian Palaeogene Basin and was active at least from the time of cessation of its sedimentation in the early Miocene. Comparison of structural data with the recent tectonic stress field, earthquake focal mechanisms and GPS measurements allows us to conclude that the Krowiarki Fault Zone shows a stable general pattern of tectonic activity for more than the last 20 myr and is presently still active.
Go to article

Abstract

Subspace-based methods have been effectively used to estimate enhanced speech from noisy speech samples. In the traditional subspace approaches, a critical step is splitting of two invariant subspaces associated with signal and noise via subspace decomposition, which is often performed by singular-value decomposition or eigenvalue decomposition. However, these decomposition algorithms are highly sensitive to the presence of large corruptions, resulting in a large amount of residual noise within enhanced speech in low signal-to-noise ratio (SNR) situations. In this paper, a joint low-rank and sparse matrix decomposition (JLSMD) based subspace method is proposed for speech enhancement. In the proposed method, we firstly structure the corrupted data as a Toeplitz matrix and estimate its effective rank value for the underlying clean speech matrix. Then the subspace decomposition is performed by means of JLSMD, where the decomposed low-rank part corresponds to enhanced speech and the sparse part corresponds to noise signal, respectively. An extensive set of experiments have been carried out for both of white Gaussian noise and real-world noise. Experimental results show that the proposed method performs better than conventional methods in many types of strong noise conditions, in terms of yielding less residual noise and lower speech distortion.
Go to article

This page uses 'cookies'. Learn more