Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

This paper adopts a fractional calculus perspective to describe a non-linear electrical inductor. First, the electrical impedance spectroscopy technique is used for measuring the impedance of the device. Second, the experimental data is approximated by means of fractional-order models. The results demonstrate that the proposed approach represents the inductor using a limited number of parameters, while highlighting its most relevant characteristics.
Go to article

Abstract

Studies of noise properties of thick-film conducting lines from Au or PdAg conductive pastes on LTCC or alumina substrates are reported. Experiments have been carried out at the room temperature on samples prepared in the form of meanders by traditional screen-printing or laser-shaping technique. Due to a low resistance of the devices under test (DUTs), low-frequency noise spectra have been measured for the dc-biased samples arranged in a bridge configuration, transformer-coupled to a low-noise amplifier. The detailed analysis of noise sources in the signal path and its transfer function, including the transformer, has been carried out, and a procedure for measurement setup self-calibration has been described. The 1/f noise component originating from resistance fluctuations has been found to be dominant in all DUTs. The analysis of experimental data leads to the conclusion that noise is produced in the bends of meanders rather than in their straight segments. It occurs that noise of Au-based laser-shaped lines is significantly smaller than screen-printed ones. PdAg lines have been found more resistive but simultaneously less noisy than Au-based lines.
Go to article

Abstract

This paper is devoted to a detailed experimentally based analysis of applicability of vector network analyzers for measuring impedance of surface mount inductors with and without DC bias. The measurements are made using custommade bias tees and a test fixture with an ordinary vector network analyzer. The main attention in the analysis is focused on measurement accuracy of an impedance of surface mount inductors. Measurement results obtained with a vector network analyzer will also be compared to those obtained by using an impedance analyzer based on auto-balancing bridge method.
Go to article

Abstract

This paper presents active inductor based VCO design for wireless applications based on analysis of active inductor models (Weng-Kuo Cascode active inductor & Liang Regular Cascode active inductor) with feedback resistor technique. Embedment of feedback resistor results in the increment of inductance as well as the quality factor whereas the values are 125.6@2.4GHz (Liang) and 98.7@3.4GHz (Weng-Kuo). The Weng-Kuo active inductor based VCO shows a tuning frequency of 1.765GHz ~2.430GHz (31.7%), while consuming a power of 2.60 mW and phase noise of -84.15 dBc/Hz@1MHz offset. On the other hand, Liang active inductor based VCO shows a frequency range of 1.897GHz ~2.522GHz (28.28%), while consuming a power of 1.40 mW and phase noise of -80.79 dBc/Hz@1MHz offset. Comparing Figure-of-Merit (FoM), power consumption, output power and stability in performance, designed active inductor based VCOs outperform with the stateof- the-art.
Go to article

Abstract

In this paper, a three-air-gapped structure of a ferrite core for a resonant inductor is proposed. The electromagnetic and thermal field models are built using a 3D finite element method. Compared with the conventional signal-air-gapped structure of a ferrite core, the simulation and analysis results show that the proposed three-air-gapped ferrite core resonant inductor can reduce eddy-current loss and decrease temperature rise. In addition, the optimal position of air-gapped is presented.
Go to article

This page uses 'cookies'. Learn more