Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:

Abstract

Studies of Quaternary sediments of South Spitsbergen (Hornsund, Bellsund and northern Billefjorden regions) focus on their occurrence, origin and chronostratigraphy. Methods and results of geological mapping are described. Glacial, glaciofluvial, glaciolacustrine and aeolian sedimentary environments, rock glaciers, taluses and raised marine beaches are presented. Mutual relations of these sediments as well as their radiocarbon and thermoluminescence datings made chronostratigraphy of Late Quaternary glacial episodes possible. Results of preliminary neotectonic studies are also presented, the same as works on periglacial phenomena, chemical weathering and tundra vegetation. Key significance of the studies for the Quaternary evolution of the Arctic and for better recognition of geodynamic phenomena of Pleistocene glaciations in Poland (Tatra and Sudeten Mts included) is underlined.
Go to article

Abstract

Rocks of the Legoupil Formation in the Cape Legoupil area were folded about a N70E oriented axis. Later these rocks were affected only by brittle deformation which occurred in four stages: (1) jointing — set I, (2) dyking, (3) faulting and, (4) jointing — set II. Both, folding and subsequent brittle deformation, are hardly compatible with the Mesozoic-Cenozoic eastward subduction of the ancient Pacific ocean crust.
Go to article

Abstract

Geological investigations of the 4th Polish Geodynamic Expedition to West Antarctica, summer 1990/91, covered the following topics: volcanological studies and mapping at Deception Island; stratigraphic, palaeonotological and sedimentological studies, and mapping of Tertiary glacial and glacio-marine strata on King George Island; sedimentological and mesostructural studies, and mapping at Hurd Peninsula, Livingston Island; and palaeontological sampling of Jurassic (Mount Flora Formation) and Trinity Peninsula Group deposits at Hope Bay, Trinity Peninsula.
Go to article

Abstract

Geological investigations of the 3rd Polish Geodynamic Expedition to West Antarctica, 1987—1988, covered the following topics: sedimentological and mesostructural studies of the Trinity Peninsula Group (?Carboniferous — Triassic) at Hope Bay, Cape Legoupil and Andvord Bay, Antarctic Peninsula, and at South Bay. Livingston Island (South Shetland Islands); late Mesozoic plant-bearing terrestrial sediments at Hope Bay; Antarctic Peninsula Volcanic Group, Andean-type plutons and systems of acidic and basic dykes (Upper Cretaceous and ?Tertiary) at Trinity Peninsula and around Gerlache Strait (Arctowski Peninsula, Anvers and Brabant islands); basalts and hyaloclastites within Tertiary glacigenic successions of King George Island; volcanic succession of the Deception Island caldera.
Go to article

Abstract

The lithospheric transect South Shetland Islands (SSI) — Antarctic Peninsula (AP) includes: the Shetland Trench (subductional) and the adjacent portion of the SE Pacific oceanic crust; the South Shetland Microplate (younger magmatic arc superimposed on continental crust); the Bransfield Rift and Platform (younger back-arc basin); the Trinity Horst (older magmatic arc superimposed on continental crust); the Gustav Rift (Late Cenozoic) and James Ross Platform (older back-arc basin). Deep seismic sounding allowed to trace the Moho discontinuity at about 30 km under South Shetlands and at 38—42 km in the northern part of Antarctic Peninsula (Trinity Horst), under typical continental crust. Modified crust was recognized under Bransfield Strait. Geological interpretation based on deep seismic refraction and multichannel reflection soundings, and surface geological data, is presented.
Go to article

Abstract

The Slyngfjellet Conglomerate which occurs at the base of the Upper Proterozoic Sofiebogen Group in South Spitsbergen had formed predominantly as a debris-flow deposit, with subordinate contribution by fluvial and probably lacustrine sediments. There is no evidence for glacial conditions at the time of formation of the conglomerate, the latter being much older than the latest Proterozoic Varangian glaciation tillites elsewhere in Svalbard. The Slyngfjellet Conglomerate originally filled buried valleys eroded by rivers in block-faulted and uplifted western margin of the Mid-Proterozoic Torellian Basin.
Go to article

This page uses 'cookies'. Learn more