Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

This paper presents the findings of a study of gas emissivity and the volumetric gas flow rate from a patented modified cellulose mix used in production of disposable sand casting moulds. The modified cellulose mix with such additives as expanded perlite, expanded vermiculite and microspheres was used as the study material. The results for gas emissivity and the gas flow rate for the modified cellulose mix were compared with the gas emissivity of the commercial material used in gating systems in disposable sand casting moulds. The results have shown that the modified cellulose mix is characterized by a lower gas emissivity by as much as 50% and lower gas flow rate per unit mass during the process of thermal degradation at the temperature of 900°C, compared to the commercial mix. It was also noted that the amount of microspheres considerably affected the amount of gas produced.
Go to article

Abstract

Nowadays, there are growing demands on the accuracy of production. Most of this is reflected in precise manufacturing, such as the investment casting process. Foundries are looking for causes of defects in some cases for a very long time, and it may happen that the source of defects is completely different from what was originally assumed. During the casting process there exist potential causes of defects as oxygen inclusions. This paper represents a summary of the beginnings of a wider research that will address the problems of gating systems in investment casting technology. In general, the influence of the melt flow is underestimated and the aim of the whole scientific research is to demonstrate the significant influence of laminar or turbulent flow on the resulting casting quality. Specifically, the paper deals with the analysis of the most frequent types of defects found in castings made of expensive types of materials casted in an open atmosphere and demonstration of connection with the design of gating systems in the future.
Go to article

Abstract

In order to study the effects of various gating systems on the casting of a complex aluminum alloyed multi-way valve body, both software simulation analysis and optimization were carried out. Following, the aluminum alloyed multi-way valve body was cast to check the pouring of the aluminum alloy valve body. The computer simulation results demonstrated that compared to the single side casting mode, the casting method of both sides of the gating system would reduce the filling of the external gas, while the air contact time would be lower. Adversely, due to the pouring on both sides, the melt cannot reach at the same time, leading to the liquid metal speed into the cavity to differ, which affected the liquid metal filling stability. The riser unreasonable setting led to the solidification time extension, resulting in a high amount of casting defects during solidification. Also, both gating systems led the entire casting inconsequential solidification. To overcome the latter problems, a straight gate was set at the middle pouring and the horizontal gate diversion occurred on both sides of pouring, which could provide better casting results for the aluminum alloyed multi-valve body.
Go to article

Abstract

Foundry technologists use their own style of gating system designing. Most of their patterns are caused by experience. The designs differ from plant to plant and give better or worse results. This shows that the theory of gating systems is not brought into general use sufficiently and therefore not applied in practise very often. Hence, this paper describes the theory and practical development of one part of gating systems - sprue base for automated horizontal moulding lines used for iron castings. Different geometries of sprue bases with gating system and casting were drawn in Solid Edge ST9. The metal flow through the gating systems was then simulated with use of MAGMA Express 5.3.1.0, and the results were achieved. The quality of flow was considered in a few categories: splashes, air entrapment, vortex generation and air contact. The economical aspect (weight of runner) was also taken under consideration. After quantitative evaluation, the best shape was chosen and optimised in other simulations with special attention on its impact on filling velocity and mould erosion. This design (a sprue base with notch placed in drag and cope) is recommended to be used in mass production iron foundries to reduce oxide creation in liquid metal and especially to still metal stream to improve filtration.
Go to article

Abstract

This article analyses a hierarchical structure of academia within two academic social media networking sites, i.e. Academia.edu and ResearchGate. In this study, I investigate profiles (in these two services) of all academic staff members of Adam Mickiewicz University in Poznań (N = 2661). I use the concept of prestige to analyse whether the hierarchical structure of academia is being reproduced in analysed services. Since prestige is an unobservable construct, I use two indicators to measure it: the number of followers and the number of views. My findings show that the hierarchical structure differs between Academia.edu and Research- Gate. While the structure of ResearchGate is explicitly hierarchical in reference to degrees of the researchers (a higher degree is related to a higher value of the prestige indicators), the structure of Academia.edu resembles a reversed pyramid (a higher degree is related to a lower value of the prestige indicators). The article concludes with a discussion concerning possible causes of differences between services in terms of reproducing the hierarchical structure. Moreover, I provide potential implications of the results as well as the justification of the necessity of using the concept of prestige to determine hierarchical structure of academia.
Go to article

This page uses 'cookies'. Learn more