Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Detection and identification of toxic environmental gases have assumed paramount importance precisely in the defense, industrial and civilian security sector. Numerous methods have been developed for the sensing of toxic gases in the environment ever since surface acoustic wave (SAW) technology came into existence. Such SAW sensors called electronic nose (E-Nose) sensor use the frequency response of a delay line/resonator. SAW device is focused and given importance. The selective coating between input and output interdigital transducers (IDTs) in the SAW device is responsible for corresponding changes in operating frequency of the device for a specific gas/vapour absorbed from the environment. A suitable combination of well-designed SAW delay lines with selective coatings not only help to improve sensor sensitivity and selectivity but also leads to the minimization of false frequency alarms in the E-Nose sensor. This article presents a comprehensive review of design, development, simulation and modelling of a SAW sensor for potential sensing of toxic environmental gases.
Go to article

Abstract

Sensing technology has been developed for detection of gases in some environmental, industrial, medical, and scientific applications. The main tasks of these works is to enhance performance of gas sensors taking into account their different applicability and scenarios of operation. This paper presents the descriptions, comparison and recent progress in some existing gas sensing technologies. Detailed introduction to optical sensing methods is presented. In a general way, other kinds of various sensors, such as catalytic, thermal conductivity, electrochemical, semiconductor and surface acoustic wave ones, are also presented. Furthermore, this paper focuses on performance of the optical method in detecting biomarkers in the exhaled air. There are discussed some examination results of the constructed devices. The devices operated on the basis of enhanced cavity and wavelength modulation spectroscopies. The experimental data used for analyzing applicability of these different sensing technologies in medical screening. Several suggestions related to future development are also discussed.
Go to article

Abstract

In recent years organic semiconductors have been given attention in the field of active materials for gas sensor applications. In the paper the investigations of the optoelectronic sensor structure of ammonia were presented. The sensor head consists of polyaniline and Nafion layers deposited on the face of the telecommunication optical fiber. The elaborated sensor structure in the form of Fabry-Perot interferometer is of the extremely small dimension – its thickness is of the order of 1 um. Many sensor structures of diffierent combinations of the polyaniline and Nafion layers were constructed and investigated. The optimal solution seems to be the structures with small number of polianiline layers (up to three).
Go to article

Abstract

The paper presents the results of numerical analysis of the SAW gas sensor in the steady and non-steady states. The effect of SAW velocity changes vs surface electrical conductivity of the sensing layer is predicted. The conductivity of the porous sensing layer above the piezoelectric waveguide depends on the profile of the diffused gas molecule concentration inside the layer. The Knudsen’s model of gas diffusion was used. Numerical results for the effect of gas CH4 on layers: WO3, TiO2, NiO, SnO2 in the steady state and CH4 in the non-steady state in recovery step in the WO3 sensing layer have been shown. The main aim of the investigation was to study thin film interaction with target gases in the SAW sensor configuration based on simple reaction-diffusion equation. The results of the numerical analysis allow to select the sensor design conditions, including the morphology of the sensor layer, its thickness, operating temperature, and layer type. The numerical results basing on the code elaborated numerical system (written in Python language), were analysed. The theoretical results were verified and confirmed experimentally.
Go to article

Abstract

Manual measurements of distribution of gas velocity in conduits of flue gas installations using systems with differential pressure sensors of velocity are often performed for the requirements of determining emissions of dust pollutants from industrial process plants to the atmosphere. The aim is to determine an axial velocity profile. Flows in measuring sections are not always coaxial along the run of the duct; they are characterized by different directions of the velocity vector at various measuring points. The determination of actual directions of vectors of local velocities giving a guarantee of an accurate calculation of the axial velocity is often not possible from the technical point of view and the measurement of the velocity is carried out with the parallel setting of the sensor head in relation to the axis and the walls of the conduit. Then the knowledge of the directional sensitivity of the applied velocity sensor allows either to eliminate the axial velocity measurement error or to take it into account by the uncertainty of this measurement. For specific situations of two-dimensional variation of direction of the velocity vector, the directional sensitivity characteristics and in consequence the characteristics of error have been determined for three sensors adopted to tests: a zero pressure dust sampling probe with the anemometric function as an element of the gravimetric dust sampler and comparatively - two commonly used Pitot tubes: types S and L.
Go to article

This page uses 'cookies'. Learn more