Search results

Filters

  • Journals
  • Date

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

When a frequency domain sensor is under the effect of an input stimulus, there is a frequency shift at its output. One of the most important advantages of such sensors is their converting a physical input parameter into time variations. In consequence, changes of an input stimulus can be quantified very precisely, provided that a proper frequency counter/meter is used. Unfortunately, it is well known in the time-frequency metrology that if a higher accuracy in measurements is needed, a longer time for measuring is required. The principle of rational approximations is a method to measure a signal frequency. One of its main properties is that the time required for measuring decreases when the order of an unknown frequency increases. In particular, this work shows a new measurement technique, which is devoted to measuring the frequency shifts that occur in frequency domain sensors. The presented research result is a modification of the principle of rational approximations. In this work a mathematical analysis is presented, and the theory of this new measurement method is analysed in detail. As a result, a new formalism for frequency measurement is proposed, which improves resolution and reduces the measurement time.
Go to article

Abstract

A new method of optical frequency beat counting based on fast Fourier transform (FFT) analysis is described. Signals with a worse signal-to-noise ratio can be counted correctly comparing to the conventional counting method of detecting each period separately. The systematic error of FFT counting below 10 Hz is demonstrated and can be decreased. Additionally the modulation width of a frequency-stabilized laser with high frequency modulation index can be simultaneously measured during a carrier frequency measurement against an optical frequency synthesizer or other laser.
Go to article

Abstract

Studies of electrical properties, including noise properties, of thick-film resistors prepared from various resistive and conductive materials on LTCC substrates have been described. Experiments have been carried out in the temperature range from 300 K up to 650 K using two methods, i.e. measuring (i) spectra of voltage fluctuations observed on the studied samples and (ii) the current noise index by a standard meter, both at constant temperature and during a temperature sweep with a slow rate. The 1/f noise component caused by resistance fluctuations occurred to be dominant in the entire range of temperature. The dependence of the noise intensity on temperature revealed that a temperature change from 300 K to 650 K causes a rise in magnitude of the noise intensity approximately one order of magnitude. Using the experimental data, the parameters describing noise properties of the used materials have been calculated and compared to the properties of other previously studied thick-film materials.
Go to article

Abstract

Cardiac Radiofrequency (RF) ablation is a commonly used clinical procedure for treating many cardiac arrhythmias. However, the efficacy of RF ablation may be limited by two factors: small ventricular lesions and impedance rise, leading to coagulum formation and desiccation of tissue. In this paper, a high frequency (HF) energy ablation system operating at 27.12 MHz based on an automated load matching system was developed. A HF energy matched probe associated to the automated impedance matching device ensures optimal transfer of the energy to the load. The aim of this study was to evaluate this energy for catheter ablation of the atrioventricular junction. In vivo studies were performed using 10 sheep to characterize the lesions created with the impedance matching system. No cardiac perforation was noted. No thrombus was observed at the catheter tip. Acute lesions ranged from 3 to 45 mm in diameter (mean ±SD = 10.3±10) and from 1 to 15 mm in depth (6.7±3.9), exhibiting a close relationship between HF delivered power level and lesion size. Catheter ablation using HF current is feasible and appears effective in producing a stable AV block when applied at the AV junction and large myocardial lesions at ventricular sites.
Go to article

Abstract

A metrological verification of a high precision digital multimeter was made by the laboratory of calibration of programmable electrical multifunction instruments of the National Institute of Metrological Research (INRIM) in order to verify its accuracy and stability. The instrument had been tested for a period of six months for five low-frequency electrical quantities (DC and AC Voltage and Current and DC Resistance). Its stability and precision were compared with the accuracy specifications of the manufacturer. As a new approach, a performance index of the DMM was introduced and evaluated for each examined measurement point. The DMM showed a satisfactory agreement with its specifications to be considered at the level of other top-class DMMs and even better in some measurements points.
Go to article

Abstract

The phase jitter enables to assess quality of signals transmitted in a bi-directional, long-distance fibre optic link dedicated for dissemination of the time and frequency signals. In the paper, we are considering measurements of jitter using a phase detector the detected frequency signal and the reference signal are supplied to. To cover the wideband jitter spectrum the detected signal frequency is divided and – because of the aliasing process – higher spectral components are shifted down. We are also examining the influence of a residual jitter that occurs in the reference signal generated by filtering the jitter occurring in the same signal, whose phase fluctuations we intend to measure. Then, we are discussing the evaluation results, which were obtained by using the target fibre optic time and frequency transfer system.
Go to article

Abstract

The secretiveness of sonar operation can be achieved by using continuous frequency-modulated sounding signals with reduced power and significantly prolonged repeat time. The application of matched filtration in the sonar receiver provides optimal conditions for detection against the background of white noise and reverberation, and a very good resolution of distance measurements of motionless targets. The article shows that target movement causes large range measurement errors when linear and hyperbolic frequency modulations are used. The formulas for the calculation of these errors are given. It is shown that for signals with linear frequency modulation the range resolution and detection conditions deteriorate. The use of hyperbolic frequency modulation largely eliminates these adverse effects.
Go to article

Abstract

Passive radar does not have its own emitter. It uses so-called signals of opportunity emitted by non-cooperative illuminators. During the detection of reflected signals, a direct signal from a non-cooperative emitter is used as the reference signal. Detection of electromagnetic echoes is, in present day radars, performed by finding the maximum of the cross ambiguity function. This function is based on the multiplication of the received signal and the reference signal. Detection of echoes by means of a quadrature microwave phase discriminator QMPD was proposed in the work as an alternative solution for ambiguity function evaluation. This discriminator carries out vectorial summing of the received and the reference signals. The summing operations in QMPD are carried out with the aid of microwave elements and without the use of expensive digital signal processors. Definitions of the phase and phase difference of the so-called simple signals and noise signals were described. A proposal of a passive radar equipped with several independent quadrature microwave phase discriminators was presented. Ideas of algorithms of object detection and of the distance-to-object estimation designed for this radar have been also sketched.
Go to article

This page uses 'cookies'. Learn more