Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

To design breast ultrasound scanning systems or to test new imaging methods, various computer models are used to simulate the acoustic wave field propagation through a breast. The computer models vary in complexity depending on the applied approximations. The objective of this paper is to investigate how the applied approximations affect the resulting wave field. In particular, we investigate the importance of taking three-dimensional (3-D) spatial variations in the compressibility, volume density of mass, and attenuation into account. In addition, we compare four 3-D solution methods: a full-wave method, a Born approximation method, a parabolic approximation method, and a ray-based method. Results show that, for frequencies below 1 MHz, the amplitude of the fields scattering off the compressibility or density contrasts are at least 24 dB higher than the amplitude of the fields scattering off the attenuation contrasts. The results also show that considering only speed of sound as a contrast is a valid approximation. In addition, it is shown that the pressure field modeled with the full-wave method is more accurate than the fields modeled using the other three methods. Finally, the accuracy of the full-wave method is location independent whereas the accuracy of the other methods strongly depends on the point of observation.
Go to article

Abstract

In the paper, a procedure for precise and expedited design optimization of unequal power split patch couplers is proposed. Our methodology aims at identifying the coupler dimensions that correspond to the circuit operating at the requested frequency and featuring a required power split. At the same time, the design process is supposed to be computationally efficient. The proposed methodology involves two types of auxiliary models (surrogates): an inverse one, constructed from a set of reference designs optimized for particular power split values, and a forward one which represents the circuit S-parameter gradients as a function of the power split ratio. The inverse model directly yields the values of geometry parameters of the coupler for any required power split, whereas the forward model is used for a post-scaling correction of the circuit characteristics. For the sake of illustration, a 10-GHz circular sector patch coupler is considered. The power split ratio of the structure is re-designed within a wide range of ��6 dB to 0 dB. As demonstrated, precise scaling (with the power split error smaller than 0.02 dB and the operating frequency error not exceeding 0.05 GHz) can be achieved at the cost of less than three full-wave EM simulations of the coupler. Numerical results are validated experimentally.
Go to article

This page uses 'cookies'. Learn more