Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

The strength of conveyor belts splices made in mines rarely reaches full belt strength. It consists of a number of factors. The primary is the method of their construction and proper selection of ingredients. The significant impact has also has splice quality covering both keeping proper geometry matched to the belt construction and belts working conditions and adherence to the best practices in the field of technologies of their construction.Difficult conditions in underground mines and pressure on reducing conveyor downtime (avoiding production losses) is reflected by a drop in static and dynamic splices strength. This is confirmed by numerous studies of belt splices strength and fatigue life conducted in the Laboratory of Belt Conveying (LTT) within the framework of research and expert opinions commissioned by belt manufacturers and their users. The consequence of too insufficiently low belt splices strength is their low durability, decreasing reliability and, consequently, higher mining transportation costs. Belt splices are in fact the weakest link in the serial structure which form closed loops of interconnected belt sections working in series of conveyors transporting excavated material in the mine. The article presents the results of simulation analyzes analyses investigating how the increase of belt splices durability may contribute to the reduction of transportation costs in the underground mines.
Go to article

Abstract

In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade. The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF), which enables the determination of parameters resulting from the Manson-Coffin-Morrow relationship. The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidal graphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties,) confirmed also small variations in the geometrical parameters of graphite related with its content and morphological features.
Go to article

Abstract

The paper presents the results of comparative tests of the fatigue properties conducted on two non-ferrous alloys designated as Al 6082 and Al 7075 which, due to the satisfactory functional characteristics, are widely used as engineering materials. The fatigue tests were carried out using a proprietary, modified low cycle test (MLCF). Particular attention was paid to the fatigue strength exponent b and fatigue ductility exponent c. Based on the tests carried out, the results comprised within the range defined by the literature were obtained. These results prove a satisfactory sensitivity of the method applied, its efficiency, the possibility of conducting tests in a fully economical way and above all the reliability of the obtained results of the measurements. Thus, the thesis has been justified that the modified low cycle fatigue test (MLCF) can be recommended as a tool used in the development of alloy characteristics within the range of low-cycle variable loads
Go to article

Abstract

The development of a novel design for the toothed segment of drive transmission in longwall shearer is expected to significantly reduce the cost of individual components of the feed system and the related work of repair and renovations, increasing at the same time the safety of mine repair teams. The conducted experimental and numerical analysis of the state of stress and strain in the innovative design of the toothed segment has enabled estimating the maximum effort of the developed structure. Based on the results of fundamental mechanical studies of the cast L20HGSNM steel and fatigue tests combined with the numerical stress/strain analysis, the fatigue life curve was plotted for the examined casting of the rack.
Go to article

Abstract

The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn) aluminium alloy and estimates possibilities of its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the 7xxx series. For analysis, wrought AlZnMgCu alloy (7075) was selected. Its potential of the estimated as-cast mechanical properties indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue properties support the thesis adopted, while the design works further confirm these assumptions.
Go to article

Abstract

The paper presents a solution of the control system for fatigue test stand MZGS-100 PL, comprising the integrated Real-Time controller based on FPGA (Field-Programmable Gate Array) technology with LabVIEW software. The described control system performs functions such as continuous regulation of speed induction motor, measuring strain of the lever machine and the test specimen, displacement of the polyharmonic vibrator, as well as the elimination of interferences, overload protection and emergency stop of the machine. The fatigue test stand also allows to set the pseudo-random history of energy parameter W(t).
Go to article

Abstract

The ecological meanings clearly indicates the need of reducing of the concentration of the CO2in the atmosphere, which can be accomplished through the lowering of the fuel consumption. This fact implies the research for the new construction solutions regarding the reduction of the weight of vehicles. The reduced weight of the vehicle is also important in the case of application of the alternative propulsion, to extend the lifetime of the batteries with the reduction of recharge cycles. The use of cast alloy AlZnMgCu compliant of plastic forming class 7xxx alloy, are intended to significantly reduce the weight of the structures, while ensuring high strength properties. The wide range of the solidification temperature, which is more than 150°C, characterizes this alloy with a high tendency to create the micro and macro porosity. The study presents the relationship between the cooling rate and the area of occurrence and percentage of microporosity. Then the results were linked to the local tensile strength predicted in the simulation analysis. The evaluation of the microporosity was performed on the basis of the CT (computed tomography) and the analysis of the alloy microstructure. The microstructure analysis was carried out on test specimen obtained from the varying wall thickness of the experimental casting. The evaluation of the mechanical properties was prepared on the basis of the static tensile test and the modified low cycle fatigue test (MLCF).
Go to article

Abstract

This study discloses the characteristic features of the modified low-cycle fatigue test used for the determination of the mechanical properties of two types of cast iron, i.e. EN-GJL-250 and EN-GJS-600-3. For selected materials, metallographic studies were also conducted in the range of light microscopy and scanning microscopy.
Go to article

Abstract

In the work was presented the results of studies concerns on the destructive mechanisms for forging tools used in the wheel forging process as well the laboratory results obtained on a specially constructed test items for testing abrasive wear and thermal fatigue. The research results of the forging tools shown that the dominant destructive mechanisms are thermal fatigue occurring in the initial the exploitation stage and abrasive wear, which occurs later, and is intensified effects of thermo-mechanical fatigue and oxidation process. In order to better analysis of phenomena associated with destructive mechanisms, the authors built a special test stands allow for a more complete analysis of each of the mechanisms separately under laboratory conditions, which correspond to the industrial forging processes. A comprehensive analysis of the forging tools confirmed by laboratory tests, showed the interaction between the thermal fatigue and abrasive wear, combined with the oxidation process. The obtained results showed that the process of oxidation and thermal fatigue, very often occur together with the mechanism of abrasive wear, creating a synergy effect. This causing the acceleration, the most visible and easily measurable process of abrasive wear.
Go to article

This page uses 'cookies'. Learn more