Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Porous materials are used in many vibro-acoustic applications. Different models describe their perfor- mance according to material’s intrinsic characteristics. In this paper, an evaluation of the effect of the porous and geometrical parameters of a liner on the acoustic power attenuation of an axisymmetric lined duct was performed using multimodal scattering matrix. The studied liner is composed by a porous ma- terial covered by a perforated plate. Empirical and phenomenal models are used to calculate the acoustic impedance of the studied liner. The later is used as an input to evaluate the duct attenuation. By varying the values of each parameter, its influence is observed, discussed and deduced
Go to article

Abstract

The radiation of sound waves from partially lined duct is treated by using the mode-matching method in conjunction with the Wiener-Hopf technique. The solution is obtained by modification of the Wiener-Hopf technique and involves an infinite series of unknowns which are determined from an infinite system of linear algebraic equations. Numerical solution of this system is obtained for various values of the problem parameters, whereby the effects of these parameters on the sound diffraction are studied. A perfect agreement is observed when the results of radiated field are compared numerically with a similar work existing in the literature.
Go to article

This page uses 'cookies'. Learn more