Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In the paper an analysis of the influence of two parameters on the die wear, i.e. the shape of the die and the backpull with the specified force values has been presented. The conical and curve-profile tools have been selected to determine an influence of the die geometry on its wear, and the backpull force has been tested with the use of conical dies. The research was conducted for the drawing of copper wire by sintered carbide die with a mesh diameter of 3 mm. A fixed draw value of 30% relative gap loss was assumed. The axisymmetric numerical model of the drawing process was built and modeled in the MARC/Mentat commercial program for nonlinear and contact issues. As a result of the tests, wear of the dies according to their shape was determined. In addition, for the conical die the drawing force and the force of the metal pressure on the die using different values of the force of the contraction were calculated, as well as wear of the conical die according to the value of the applied backpull force. It has been shown that in the case of the arc die, the distribution of pressure and stress is more uniform over the entire length of the contact zone compared to the conical die. The highest stress gradients occurred in the area of the transition of the crushing part into the drawing part of the die, which caused that the use of the conical die in this area was more than twice as large as the arc die. In addition, on the example of a conical die, it was shown to what extent the depth of its wear decreases with an increase of the test pull force in the range (0-400) of Newtons.
Go to article

Abstract

The present work discusses results of increased temperature on shape-dimensional changes of a 110 type hose coupling, produced from EN AC-AlSi11 alloy with the use of pressure die casting technology. The castings were soaked for 3.5 h at temperatures 460°C, 475°C and 490°C. The verification of shape-dimensional accuracy of the elements after soaking treatment, in relation to raw casting, was carried out by comparing the 3D models received from 3D scanning. Soaking temperature of about 460°C-475°C results in no significant changes in the shapes and dimensions of the castings, or surface defects in the form of blisters, which can be seen at a temperature of 490°C.
Go to article

This page uses 'cookies'. Learn more