Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 33
items per page: 25 50 75
Sort by:

Abstract

This paper presents the design of digital controller for longitudinal aircraft model based on the Dynamic Contraction Method. The control task is formulated as a tracking problem of velocity and flight path angle, where decoupled output transients are accomplished in spite of incomplete information about varying parameters of the system and external disturbances. The design of digital controller based on the pseudo-continuous approach is presented, where the digital controller is the result of continuous-time controller discretization. A resulting output feedback controller has a simple form of a combination of low-order linear dynamical systems and a matrix whose entries depend nonlinearly on certain known process variables. Simulation results for an aircraft model confirm theoretical expectations.
Go to article

Abstract

We study an elegant snap system with only one nonlinear term, which is a quadratic nonlinearity. The snap systemdisplays chaotic attractors,which are controlled easily by changing a system parameter. By using analysis, simulations and a real circuit, the dynamics of such a snap system has been investigated. We also investigate backstepping based adaptive control schemes for the new snap system with unknown parameters.
Go to article

Abstract

This paper presents a robust model free controller (RMFC) for a class of uncertain continuous-time single-input single-output (SISO) minimum-phase nonaffine-in-control systems. Firstly, the existence of an unknown dynamic inversion controller that can achieve control objectives is demonstrated. Afterwards, a fast approximator is designed to estimate as best as possible this dynamic inversion controller. The proposed robust model free controller is an equivalent realization of the designed fast approximator. The perturbation theory and Tikhonov’s theorem are used to analyze the stability of the overall closed-loop system. The performance of the developped controller are verified experimentally in the position control of a pneumatic actuator system.
Go to article

Abstract

Although the explicit commutativitiy conditions for second-order linear time-varying systems have been appeared in some literature, these are all for initially relaxed systems. This paper presents explicit necessary and sufficient commutativity conditions for commutativity of second-order linear time-varying systems with non-zero initial conditions. It has appeared interesting that the second requirement for the commutativity of non-relaxed systems plays an important role on the commutativity conditions when non-zero initial conditions exist. Another highlight is that the commutativity of switched systems is considered and spoiling of commutativity at the switching instants is illustrated for the first time. The simulation results support the theory developed in the paper.
Go to article

Abstract

In the paper finite-dimensional time-variable dynamical control systems described by linear stochastic ordinary differential state equations with single time-variable point delay in the control are considered. Using notations, theorems and methods taken directly from deterministic controllability problems necessary and sufficient conditions for different kinds of stochastic relative controllability in a given time interval are formulated and proved. It will be proved that under suitable assumptions relative controllability of a deterministic linear associated dynamical system is equivalent to stochastic relative exact controllability and stochastic relative approximate controllability of the original linear stochastic dynamical system. Some remarks and comments on the existing results for stochastic controllability of linear dynamical systems are also presented.
Go to article

Abstract

In the present paper finite-dimensional dynamical control systems described by semilinear ordinary differential state equations with multiple point delays in control are considered. It is generally assumed, that the values of admissible controls are in a convex and closed cone with vertex at zero. Using so-called generalized open mapping theorem, sufficient conditions for constrained local relative controllability near the origin are formulated and proved. Roughly speaking, it will be proved that under suitable assumptions constrained global relative controllability of a linear associated approximated dynamical system implies constrained local relative controllability near the origin of the original semilinear dynamical system. This is generalization to the constrained controllability case some previous results concerning controllability of linear dynamical systems with multiple point delays in the control and with unconstrained controls. Moreover, necessary and sufficient conditions for constrained global relative controllability of an associated linear dynamical system with multiple point delays in control are discussed. Simple numerical example, which illustrates theoretical considerations is also given. Finally, some remarks and comments on the existing results for controllability of nonlinear dynamical systems are also presented.
Go to article

Abstract

In the present paper .nite-dimensional, stationary dynamical control systems described by semilinear ordinary di.erential state equations with multiple point delays in control are considered. In.nite-dimensional semilinear stationary dynamical control systems with single point delay in the control are also discussed. Using a generalized open mapping theorem, su.cient conditions for constrained local relative controllability are formulated and proved. It is generally assumed, that the values of admissible controls are in a convex and closed cone with vertex at zero. Some remarks and comments on the existing results for controllability of nonlinear dynamical systems are also presented.
Go to article

Abstract

In the paper finite-dimensional stationary dynamical control systems described by linear stochastic ordinary differential state equations with single point delay in the control are considered. Using notations, theorems and methods taken directly from deterministic controllability problems, necessary and sufficient conditions for different kinds of stochastic relative controllability are formulated and proved. It will be proved that under suitable assumptions relative controllability of a deterministic linear associated dynamical system is equivalent to stochastic relative exact controllability and stochastic relative approximate controllability of the original linear stochastic dynamical system. Some remarks and comments on the existing results for stochastic controllability of linear dynamical systems with delays are also presented. Finally, minimum energy control problem for stochastic dynamical system is formulated and solved.
Go to article

Abstract

This paper presents a brief survey of our research in which we have used control theoretic methods in modelling and control of cancer populations. We focus our attention on two classes of problems: optimization of anticancer chemotherapy taking into account both phase specificity and drug resistance, and modelling, and optimization of antiangiogenic therapy. In the case of chemotherapy the control action is directly aimed against the cancer cells while in the case of antiangiogenic therapy it is directed against normal cells building blood vessels and only indirectly it controls cancer growth. We discuss models (both finite and infinite dimensional) which are used to find conditions for tumour eradication and to optimize chemotherapy protocols treating cell cycle as an object of control. In the case of antiangiogenic therapy we follow the line of reasoning presented by Hahnfeldt et al. who proposed to use classical models of self-limiting tumour growth with variable carrying capacity defined by the dynamics of the vascular network induced by the tumour in the process of angiogenesis. In this case antiangiogenic protocols are understood as control strategies and their optimization leads to new recommendations for anticancer therapy.
Go to article

Abstract

In this paper an artificial neural network, which realizes a nonlinear adaptive control algorithm, has been applied in a control system of variable speed generating system. The speed is adjusted automatically as a function of load power demand. The controller employs a single layer neural network to estimate the unknown plant nonlinearities online. Optimization of the controller is difficult because the plant is nonlinear and no stationary. Furthermore, it deals with the situation where the plant becomes uncontrollable without any restrictive assumptions. In contrast to previous work [1] on the same subject, the number of neural networks has been reduced to only one network. The number of the neurons in a network structure as well as choosing certain design parameters was specified a priori. The computer test results have been presented to show performance of proposed neural controller.
Go to article

Abstract

The solution of applications for air pollution control in foundries for iron and non-ferrous metals may not only be understood as the observance of requested emission limit values at the stack outlet. An effective environmental protection already starts with the greatest possible capture of pollutants at the source with at the same time minimisation of the volume flow necessary for this. Independent of this, the downstream installed filtration system has to realise a degree of separation of definitely above 99%. Furthermore, when selecting the filter construction, attention has to be paid to a high availability. An even temporarily production without filter will more and more no longer be accepted by residents and authorities. Incidents at the filter lead to a shutdown of the whole production. Additional measures for heat recovery while preparing concepts for filtration plants help to reduce the energy consumption and serve for a sustained conservation of environment. A consequent consideration of the items above is also condition for the fact that environmental protection in foundries remains affordable. The lecture deals with the subjects above from the point of view of a plant constructor.
Go to article

Abstract

The paper addresses the problem of constrained pole placement in discrete-time linear systems. The design conditions are outlined in terms of linear matrix inequalities for the Dstable ellipse region in the complex Z plain. In addition, it is demonstrated that the D-stable circle region formulation is the special case of by this way formulated and solved pole placement problem. The proposed principle is enhanced for discrete-lime linear systems with polytopic uncertainties.
Go to article

Abstract

A novel 4-D chaotic hyperjerk system with four quadratic nonlinearities is presented in this work. It is interesting that the hyperjerk system has no equilibrium. A chaotic attractor is said to be a hidden attractor when its basin of attraction has no intersection with small neighborhoods of equilibrium points of the system. Thus, our new non-equilibrium hyperjerk system possesses a hidden attractor. Chaos in the system has been observed in phase portraits and verified by positive Lyapunov exponents. Adaptive backstepping controller is designed for the global chaos control of the non-equilibrium hyperjerk system with a hidden attractor. An electronic circuit for realizing the non-equilibrium hyperjerk system is also introduced, which validates the theoretical chaotic model of the hyperjerk system with a hidden chaotic attractor.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

Modern control and measurement systems are equipped with interfaces to operate in local area networks and are typically intended to perform complicated data processing and control algorithms. The authors propose a digital system for rapid prototyping of target application devices. The concept solution separates the processing and control section from the hardware interface and user interface section. Both sections constitute independent ARM-based controllers interconnected via a direct USB link. Popular libraries can be used and low-level procedures developed, which enhances the system’s economic viability. A test unit developed for the purpose of the study was built around a SoC ARM7 microsystem and an off-the-shelf palmtop device. It demonstrated a continuous data stream transfer capability up to 150 kB per second, which was sufficient to monitor the performance of an electricity line.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

The chaotic phenomena of coronary artery systems are hazardous to health and may induce illness development. From the perspective of engineering, the potential harm can be eliminated by synchronizing chaotic coronary artery systems with a normal one. This paper investigates the chaos synchronization problem in light of the methodology of sliding mode control (SMC). Firstly, the nonlinear dynamics of coronary artery systems are presented. Since the coronary artery systems suffer from uncertainties, the technique of derivative-integral terminal SMC is employed to achieve the chaos synchronization task. The stability of such a control system is proven in the sense of Lyapunov. To verify the feasibility and effectiveness of the proposed method, some simulation results are illustrated in comparison with a benchmark.
Go to article

Abstract

The development of accurate computer control of a 3 MV Van de Graaff accelerator operation is described. The developed system comprises the accelerator turn-on and turn-off procedures during a normal run, which includes the setting of the terminal voltage, ion source light up, beam focusing and control of ion beam current and energy during operation. In addition, the computer monitors the vacuum and is able to make a detail register of the most important events during a normal run. The computer control system uses a LabVIEW application for interaction with the operator and an I/O board that interfaces the computer and the accelerator system. For everyday operating conditions the control implemented is able to turn-on and off the machine in about the same time as a specialized technician. In addition, today more users can make experiments in the accelerator without the help of a specialized operator, which in turns increases the number of hours during which the accelerator can be used.
Go to article

Abstract

Wave-Based Control has been previously applied successfully to simple underactuated flexible mechanical systems. Spacecraft and rockets with structural flexibility and sloshing are examples of such systems but have added difficulties due to nonuniform structure, external disturbing forces and non-ideal actuators and sensors. The aim of this paper is to extend the application of WBC to spacecraft systems, to compare the performance of WBC to other popular controllers and to carry out experimental validation of the designed control laws. A mathematical model is developed for an upper stage accelerating rocket moving in a single plane. Fuel sloshing is represented by an equivalent mechanical pendulum model. A wave-based controller is designed for the upper stage AVUM of the European launcher Vega. In numerical simulations the controller successfully suppresses the sloshing motion. A major advantage of the strategy is that no measurement of the pendulum states (sloshing motion) is required.
Go to article

Abstract

The positive (minimal) realization problem for a class of singular discrete-time linear single-input, single-output systems with delays in state and delays in control is addressed. Solvability conditions for the positive (minimal) realization problem are established. It is shown that there exists a positive (minimal) realization of an improper transfer function T(z) = n(z) / d(z) if the coefficients of polynomial n(z) are non-negative and of the polynomial d(z) are non-positive except the leading one, which should be positive. A procedure for computation of the positive (minimal) realization of the transfer function is proposed and illustrated by an example.
Go to article

Abstract

In the paper an approach to design of multipurpose control systems is considered. It is presented an universal and efficient algorithm for synthesis of multipurpose control system for proper, invertible and right-invertible multi-input multi-output dynamic (MIMO) plants which can be both unstable and/or non-minimumphase. The developed control systems feature both dynamic (either block or row-by-row) decoupling and arbitrary closed-loop pole placement and zero steady-state errors for regulation or tracking processes in presence of (non-diminishing) disturbances.
Go to article

Abstract

In this paper, the PLC-based (Programmable Logic Controller) industrial implementation in the form of the general-purpose function block for ADRC (Active Disturbance Rejection Controller) is presented. The details of practical aspects are discussed because their reliable implementation is not trivial for higher order ADRC. Additional important novelties discussed in the paper are the impact of the derivative backoff and the method that significantly simplifies tuning of higher order ADRC by avoiding the usual trial and error procedure. The results of the practical validation of the suggested concepts complete the paper and show the potential industrial applicability of ADRC.
Go to article

This page uses 'cookies'. Learn more