Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 54
items per page: 25 50 75
Sort by:

Abstract

This article presents a hybrid control system for a group of mobile robots. The components of this system are the supervisory controller(s), employing a discrete, event-driven model of concurrent robot processes, and robot motion controllers, employing a continuous time model with event-switched modes. The missions of the robots are specified by a sequence of to-be visited points, and the developed methodology ensures in a formal way their correct accomplishment.
Go to article

Abstract

The rules and guidelines for integrated pest management specified in Annex III, sections 2 and 3, state “General principles of integrated pest management”: Harmful organisms must be monitored by adequate methods and tools, where available. Such adequate tools should include observations in the field as well as scientifically sound warnings, forecasting and early diagnostic systems, where feasible, as well as advice from professionally qualified advisors. As part of Multiannual Programs, the Institute of Plant Protection – NRI in Poznań has been carrying out work and research for many years to develop or modify guidelines for monitoring short- and long-term forecasting of pest occurrence on crops. These guidelines are extremely helpful for farmers and advisers in determining the optimum date of chemical control of pests on plants. Regularly revised and improved the guidelines deal with pests which currently pose a threat to crops. They are developed according to the latest scientific findings and are successfully promoted among professional users and agricultural advisors. These guidelines are standardized to include descriptions of species, life cycles, symptoms of damage/infestation of crops, methods of observation targeted at warning of the need for plant protection treatments, and threshold values of harmfulness. All guidelines include extensive photographic material. Guidelines for the monitoring of pests on orchard plants, vegetables and others are prepared at the Institute of Soil Science and Plant Cultivation − NRI in Puławy and the Institute of Pomology in Skierniewice. Guidelines for about 80 pests of crops are available for public use in the on-line Pest Warning System (Platforma Sygnalizacji Agrofagów, www.agrofagi.com.pl).
Go to article

Abstract

Research activities of Polish research groups in a period of 2015–2019 on reference frames and reference networks are reviewed and summarised in this paper. The summary contains the results concerning the implementation of latest resolutions on reference systems of the International Union of Geodesy and Geophysics and the International Union of Astronomy with special emphasis on the changes in the Astronomical Almanac of the Institute of Geodesy and Cartography, Warsaw. It further presents the status of the implementation of the European Terrestrial Reference System 1989 (ETRS89) in Poland, monitoring the terrestrial reference frame, operational work of GNSS permanent IGS/EPN stations in Poland, operational work of the laser ranging station in Poland of the International Laser Ranging Service (ILRS), active GNSS station network for the realization of ETRS89 in Poland, validation of recent ETRS89 realization, expressed in ETRF2000 in Poland, and maintenance of the vertical control in Poland (PL-KRON86-NH). Extensive research activities are observed in the field of maintenance and modernization of gravity control not only in Poland, but also in Sweden and in Denmark, as well as establishment of gravity control in Ireland based on absolute gravity survey. The magnetic control in Poland was also regularly maintained. The bibliography of the related works is given in references.
Go to article

Abstract

The summary of research activities concerning reference frames and reference networks performed in Poland in a period of 2011–2014 is presented. It contains the results of research on implementation of IUGG2011 and IAU2012 resolutions on reference systems, implementation of the ETRS89 in Poland, operational work of permanent IGS/ EUREF stations in Poland, operational work of ILRS laser ranging station in Poland, active GNSS station networks in Poland, maintenance of vertical control in Poland, maintenance and modernization of gravity control, and maintenance of magnetic control in Poland. The bibliography of the related works is given in references.
Go to article

Abstract

Fast and accurate grid signal frequency estimation is a very important issue in the control of renewable energy systems. Important factors that influence the estimation accuracy include the A/D converter parameters in the inverter control system. This paper presents the influence of the number of A/D converter bits b, the phase shift of the grid signal relative to the time window, the width of the time window relative to the grid signal period (expressed as a cycle in range (CiR) parameter) and the number of N samples obtained in this window with the A/D converter on the developed estimation method results. An increase in the number b by 8 decreases the estimation error by approximately 256 times. The largest estimation error occurs when the signal module maximum is in the time window center (for small values of CiR) or when the signal value is zero in the time window center (for large values of CiR). In practical applications, the dominant component of the frequency estimation error is the error caused by the quantization noise, and its range is from approximately 8×10-10 to 6×10-4.
Go to article

Abstract

The paper presents a solution of the control system for fatigue test stand MZGS-100 PL, comprising the integrated Real-Time controller based on FPGA (Field-Programmable Gate Array) technology with LabVIEW software. The described control system performs functions such as continuous regulation of speed induction motor, measuring strain of the lever machine and the test specimen, displacement of the polyharmonic vibrator, as well as the elimination of interferences, overload protection and emergency stop of the machine. The fatigue test stand also allows to set the pseudo-random history of energy parameter W(t).
Go to article

Abstract

The development of digital signal processors and the increase in their computing capabilities bring opportunities to employ algorithms with multiple variable parameters in active noise control systems. Of particular interest are the algorithms based on artificial neural networks. This paper presents an active noise control algorithm based on a neural network and a nonlinear input-output system identification model. The purpose of the algorithm is an active noise control system with a nonlinear primary path. The algorithm uses the NARMAX system identification model. The neural network employed in the proposed algorithm is a multilayer perceptron. The error backpropagation rule with adaptive learning rate is employed to update the weight of the neural network. The performance of the proposed algorithm has been tested by numerical simulations. Results for narrow-band input signals and nonlinear primary path are presented below.
Go to article

Abstract

The development of accurate computer control of a 3 MV Van de Graaff accelerator operation is described. The developed system comprises the accelerator turn-on and turn-off procedures during a normal run, which includes the setting of the terminal voltage, ion source light up, beam focusing and control of ion beam current and energy during operation. In addition, the computer monitors the vacuum and is able to make a detail register of the most important events during a normal run. The computer control system uses a LabVIEW application for interaction with the operator and an I/O board that interfaces the computer and the accelerator system. For everyday operating conditions the control implemented is able to turn-on and off the machine in about the same time as a specialized technician. In addition, today more users can make experiments in the accelerator without the help of a specialized operator, which in turns increases the number of hours during which the accelerator can be used.
Go to article

Abstract

The paper presents construction and control system of the climbing robot Safari designed at the Poznan University of Technology for inspection of high building walls, executed in order to evaluate their technical condition. Because such tasks are uncomfortable and very dangerous for humans, this mobile machine gives a possibility to observe and examine the state of the surface on which it is moving. The robot is a construction developed for walking on flat but uneven vertical and horizontal surfaces. Its on-board equipment provides ability to remotely examine and record images reflecting the robot’s surroundings. At the beginning of the paper, several concepts of existing climbing robots (four-legged, six-legged, sliding platform) are outlined. Next, the mechanical system of the Safari robot is presented with special emphasis on its kinematic equations and description of movement stages. Then, the on-board manipulator as well as the sensor and control systems are described.
Go to article

Abstract

In this paper an active multimodal beam vibration reduction via one actuator is considered. The optimal actuator distribution is analyzed with two methods: an exact mathematical principles and the LQ problem idea. It turned out that the same mathematical expressions are derived. Thus, these methods are equivalent.
Go to article

Abstract

For many adaptive noise control systems the Filtered-Reference LMS, known as the FXLMS algorithm is used to update parameters of the control filter. Appropriate adjustment of the step size is then important to guarantee convergence of the algorithm, obtain small excess mean square error, and react with required rate to variation of plant properties or noise nonstationarity. There are several recipes presented in the literature, theoretically derived or of heuristic origin. This paper focuses on a modification of the FXLMS algorithm, were convergence is guaranteed by changing sign of the algorithm steps size, instead of using a model of the secondary path. A TakagiSugeno-Kang fuzzy inference system is proposed to evaluate both the sign and the magnitude of the step size. Simulation experiments are presented to validate the algorithm and compare it to the classical FXLMS algorithm in terms of convergence and noise reduction.
Go to article

Abstract

Control of the technological processes of coal enrichment takes place in the presence of wide disturbances. Thus, one of the basic tasks of the coal enrichment process control systems is the stabilization of coal quality parameters at a preset level. An important problem is the choice of the controller which is robust for a variety of disturbances. The tuning of the controller parameters is no less important in the control process . Many methods of tuning the controller use the dynamic characteristics of the controlled process (dynamic model of the controlled object). Based on many studies it was found that the dynamics of many processes of coal enrichment can be represented by a dynamic model with properties of the inertial element with a time delay. The identification of object parameters (including the time constant) in industrial conditions is usually performed during normal operation (with the influence of disturbances) from this reason, determined parameters of the dynamic model may differ from the parameters of the actual process. The control system with controller parameters tuned on the basis of such a model may not satisfy the assumed control quality requirements. In the paper, the analysis of the influence of changes in object model parameters in the course of the controlled value has been carried out. Research on the controller settings calculated according to parameters T and τ were carried out on objects with other parameter values. In the studies, a sensitivity analysis method was used. The sensitivity analysis for the three methods of tuning the PI controller for the coal enrichment processes control systems characterized by dynamic properties of the inertial element with time delay has been presented. Considerations are performed at various parameters of the object on the basis of the response of the control system for a constant value of set point. The assessment of considered tuning methods based on selected indices of control quality have been implemented.
Go to article

Abstract

Self-control is a complex and multifaceted construct that can be regarded as an individual trait that follows its own developmental trajectory. In the presented study we used NAS-50 for the assessment of self-control in adolescents and young adults. Since the questionnaire has not been used before in underage participants we tested its reliability in adolescent and adult samples. We also investigated possible age and gender differences in self-control abilities as well as relations between NAS-50 and behavioral measures of cognitive control and impulsivity. Although the sample was quite small, the reliability of the questionnaire was similar to the results achieved by its authors. According to the predictions in the literature we did not find relations between NAS-50 and behavioral measures of cognitive control and impulsivity. We also did not observe significant age differences in the assessment of self-control abilities. The theoretical relevance of our results is discussed.
Go to article

Abstract

This paper presents the design of digital controller for longitudinal aircraft model based on the Dynamic Contraction Method. The control task is formulated as a tracking problem of velocity and flight path angle, where decoupled output transients are accomplished in spite of incomplete information about varying parameters of the system and external disturbances. The design of digital controller based on the pseudo-continuous approach is presented, where the digital controller is the result of continuous-time controller discretization. A resulting output feedback controller has a simple form of a combination of low-order linear dynamical systems and a matrix whose entries depend nonlinearly on certain known process variables. Simulation results for an aircraft model confirm theoretical expectations.
Go to article

Abstract

We derive exact and approximate controllability conditions for the linear one-dimensional heat equation in an infinite and a semi-infinite domains. The control is carried out by means of the time-dependent intensity of a point heat source localized at an internal (finite) point of the domain. By the Green’s function approach and the method of heuristic determination of resolving controls, exact controllability analysis is reduced to an infinite system of linear algebraic equations, the regularity of which is sufficient for the existence of exactly resolvable controls. In the case of a semi-infinite domain, as the source approaches the boundary, a lack of L2-null-controllability occurs, which is observed earlier by Micu and Zuazua. On the other hand, in the case of infinite domain, sufficient conditions for the regularity of the reduced infinite system of equations are derived in terms of control time, initial and terminal temperatures. A sufficient condition on the control time, heat source concentration point and initial and terminal temperatures is derived for the existence of approximately resolving controls. In the particular case of a semi-infinite domain when the heat source approaches the boundary, a sufficient condition on the control time and initial temperature providing approximate controllability with required precision is derived.
Go to article

Abstract

The LQR (linear quadratic regulator) control problem subject to singular system constitutes a optimization problem in which one must be find an optimal control that satisfy the singular system and simultaneously to optimize the quadratic objective functional. In this paper we establish a sufficient condition to obtain the optimal control of discounted LQR optimization problem subject to disturbanced singular system where the disturbance is time varying. The considered problem is solved by transforming the discounted LQR control problem subject to disturbanced singular system into the normal LQR control problem. Some available results in literatures of the normal LQR control problem be used to find the sufficient conditions for the existence of the optimal control for discounted LQR control problem subject to disturbanced singular system. The final result of this paper is in the form a method to find the optimal control of discounted LQR optimization problem subject to disturbanced singular system. The result shows that the disturbance is vanish with the passage of time.
Go to article

Abstract

The study of the subdivision driving technology of a stepper motor and two types of typical acceleration and deceleration curves aims at optimizing the open-loop control performance of the stepper motor. The simulation model of a two-phase hybrid stepper motor open-loop control system is set up based on the mathematical model of the stepper motor, in order to let the stepper motor have the smaller stepper angle, two types of typical acceleration and a deceleration curve algorithm are designed for the real- time online calculation based on the subdivision driving technology. It respectively carries out the simulation analysis for their control effects. The simulation results show that the parabolic acceleration and deceleration curves have a larger maximum in-step rotation angle and the faster dynamic response ability in the same control period, and at the same time, the position tracking error of an intermediate process is smaller.
Go to article

Abstract

The minimum energy control problem for the positive descriptor discrete-time linear systems with bounded inputs by the use of Weierstrass-Kronecker decomposition is formulated and solved. Necessary and sufficient conditions for the positivity and reachability of descriptor discrete-time linear systems are given. Conditions for the existence of solution and procedure for computation of optimal input and the minimal value of the performance index is proposed and illustrated by a numerical example.
Go to article

Abstract

In this paper precision of the system controlling delivery by a helicopter of a water capsule designed for extinguishing large scale fires is analysed. The analysis was performed using a numerical method of distribution propagation (the Monte Carlo method) supplemented with results of application of the uncertainty propagation method. In addition, the optimum conditions for the airdrop are determined to ensure achieving the maximum area covered by the water capsule with simultaneous preserving the precision level necessary for efficient fire extinguishing.
Go to article

Abstract

A sliding mode controller for the photovoltaic pumping system has been proposed in this paper. This system is composed of a photovoltaic generator supplying a three-phase permanent magnet synchronous motor coupled to a centrifugal pump through a three-phase voltage inverter. The objective of this study is to minimise the number of regulators and apply the sliding mode control by exploiting the specification of the field oriented control scheme (FOC). The first regulator is used to force the photovoltaic generator to operate at the maximum power point, while the second is used to provide the field oriented control to improve the system performance.The whole system is analysed and its mathematical model is done. Matlab is used to validate the performance and robustness of the proposed control strategy.
Go to article

This page uses 'cookies'. Learn more