Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The region’s development potential is a set of endogenous features that determine the growth of the local economy. It supports the development of knowledge, innovation and eff ective competition on global markets. The publication argues that saturation with potential may not be enough to cause economic growth. The distribution of potential is also important: concentration is its catalyst. The study proposes a method for measuring the concentration of potential. It has also been shown that the size of the regional economy depends on the distribution of potential in the region.
Go to article

Abstract

Steel and cast-iron products, due to their low price and beneficial properties, are the most widely used among metals; their consumption has become an indicator of the economic development of countries. The characteristics of iron raw materials, in relation to current metallurgical requirements, are presented in the present this article. The globalization of the trade and development of steelmaking technologies have caused significant changes in the quality of raw materials in the last half-century forcing improvements in processing technologies. In many countries, standard concentrates (at least 60% Fe) are almost twice as rich as those processed in the mid-20th century. Methods of quality assessment have been improved and quality standards tightened. The quality requirements for the most important raw materials ‒ iron ores and concentrates, steel scrap, major alloy metals, coking coal, and coke, as well as gas and other energy media ‒ are reviewed in the present paper. Particular attention is paid to the quality testing methodology. The quality of many raw materials is evaluated multi-parametrically: both chemical and physical characteristics are important. Lower-quality parameters in raw materials equate to significantly lower prices obtained by suppliers in the market. The markets for these raw materials are diversified and governed by separate sets of newly introduced rules. Price benchmarks (e.g. for standard Australian metallurgical coal) or indices (for iron concentrates) apply. Some raw materials are quoted within the framework of the commodity market system (certain alloying components and steel scrap). The abandonment of the long-established system of multi-annual contracts has led to wide fluctuations in prices, which have reached a scale similar to that of other metals.
Go to article

Abstract

This investigation is concerned with the extraction of nugget copper particles from copper recovery plant slag which recycled of copper scrap. For this purpose, the Falcon concentrator was used because of its enhanced gravity properties. The Falcon concentrator has a fast spinning bowl which creates a centrifugal force to separate fine size minerals on the basis of their density differences. In the tests, the tailings of the copper recovery plant were used and the test sample was divided into two groups and one of them was classified in narrow particle sizes. The operational parameters were determined as particle size, centrifugal force and washing water pressures. The water pressure and centrifugal force have an inversely proportional relationship. Because of this phenomenon, the G/P parameter was created. The test conditions were applied to the whole distribution sample and narrow size distribution samples in the same way. The test results indicate that the average grade was elevated from 1.04% to 6.50% with the recovery of 15.07% and 619% enrichment ratio for narrow sizes, whereas grade was elevated to 4.36% with 13.24% recovery and 415.94% enrichment ratio for the whole distribution. As a result, the recovery and grade values of concentrates are not good enough for gravity concentration process for both samples. However, this process was applied to the double recycled material and the lower recovery, grade values can be tolerated because of concentrate is nugget copper metal. The concentrate can also be washed in cleaning table for increasing the grade value for adding to initial feed of plant. This process can, therefore, supply important earnings not only economically but also environmentally.
Go to article

Abstract

This paper presents the results of studies on functional possibilities of the optimization of geometric sizes and the design development of specialized resonance concentrating link (concentrator-sonotrode) with enlarged radiating surface. Developed theoretical model allows to determine the value of longitudinal and transverse sizes of each part of concentrating link providing the achievement of required features of the ultrasonic vibrating systems (gain factor of the unit and its resonance frequency). To verify the efficiency of designed model, the geometric sizes of resonance concentrating link were determined using the finite-element complex, which showed that the disagreement did not exceed 10%. The efficiency of proposed model at the determining of size and resonance characteristics of concentrating link was proved by the experiments. Theoretical and experimental studies helped to optimize the size of concentrating link while the vi- brating system developed on its base enabled the enlargement of radiating surface without decreasing the radiation intensity for the realization of technologies of cavitation treatment of liquid media
Go to article

Abstract

Detection of explosives vapors is an extremely difficult task. The sensitivity of currently constructed detectors is often insufficient. The paper presents a description of an explosive vapors concentrator that improves the detection limit of some explosives detectors. These detectors have been developed at the Institute of Optoelectronics. The concentrator is especially dedicated to operate with nitrogen oxide detectors. Preliminary measurements show that using the concentrator, the recorded amount of nitrogen dioxide released from a 0.5 ng sample of TNT increases by a factor of approx. 20. In the concentrator an induction heater is applied. Thanks to this and because of the miniaturization of the container with an adsorbing material (approx. 1 cm3), an extremely high rate of temperature growth is achieved (up to 500 °C within approx. 25 s). The concentration process is controlled by a microcontroller. Compact construction and battery power supply provide a possibility of using the concentrator as a portable device.
Go to article

Abstract

The paper presents results of the field tests on membrane biogas enrichment performed with the application of mobile membrane installation (MMI) with the feed stream up to 10 Nm3/h. The mobile installation equipped with four hollow fibre modules with polyimide type membranes was tested at four different biogas plants. Two of them were using agricultural substrates. The third one was constructed at a municipal wastewater plant and sludge was fermented in a digester and finally in the fourth case biogas was extracted from municipal waste landfill site. Differences in the concentration of bio-methane in feed in all cases were observed and trace compounds were detected as well. High selectivity polyimide membranes, in proper module arrangements, can provide a product of high methane content in all cases. The content of other trace compounds, such as hydrogen sulphide, water vapour and oxygen on the product did not exceed the values stated by standard for a biogas as a vehicle fuel. The traces of hydrogen sulphide and water vapour penetrated faster to the waste stream enriched in carbon dioxide, which could lead to further purification of the product – methane being hold in the retentate (H2O > H2S > CO2 > O2 > CH4 > N2). In the investigated cases, when concentration of N2 was low and concentration of CH4 higher than 50%, it was possible to upgrade methane to concentration above 90% in a two-stage cascade. To performsimulation ofCH4 andCO2 permeation through polyimide membrane,MATLABwas used. Simulation program has included permeation gaseous mixture with methane contents as observed at field tests in the range of 50 and 60% vol. The mass transport process was estimated for a concurrent hollow fibre membrane module for given pressure and temperature conditions and different values of stage cut. The obtained results show good agreement with the experimental data. The highest degree of methane recovery was obtained with gas concentrating in a cascade with recycling of the retentate.
Go to article

This page uses 'cookies'. Learn more