Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Combine harvesters are the source a large amount of noise in agriculture. Depending on different working conditions, the noise of such machines can have a significant effect on the hearing condition of drivers. Therefore, it is highly important to study the noise signals caused by these machines and find solutions for reducing the produced noise. The present study was carried out is order to obtain the fractal dimension (FD) of the noise signals in Sampo and John Deere combine harvesters in different operational conditions. The noise signals of the combines were recorded with different engine speeds, operational conditions, gear states, and locations. Four methods of direct estimations of the FD of the waveform in the time domain with three sliding windows with lengths of 50, 100, and 200 ms were employed. The results showed that the Fractal Dimension/Sound Pressure Level [dB] in John Deere and Sampo combines varied in the ranges of 1.44/96.8 to 1.57/103.2 and 1.23/92.3 to 1.51/104.1, respectively. The cabins of Sampo and John Deere combines reduced and enhanced these amounts, respectively. With an increase in the length of the sliding windows and the engine speed of the combines, the amount of FD increased. In other words, the size of the suitable window depends on the extraction method of calculating the FD. The results also showed that the type of the gearbox used in the combines could have a tangible effect on the trend of changes in the FD.
Go to article

Abstract

The paper presents an analysis of the sustainable development of electricity generation sources in the National Power System (NPS). The criteria to be met by sustainable power systems were determined. The paper delineates the power balance of centrally dispatched power generation units (CDPGU), which is required for the secure work of the NPS until 2035. 19 prospective electricity generation technologies were defined. They were divided into the following three groups: system power plants, large and medium combined heat and power (CHP) plants, as well as small power plants and CHP plants (distributed sources). The quantities to characterize the energy effectiveness and CO2 emission of the energy generation technologies analyzed were determined. The unit electricity generation costs, discounted for 2018, including the costs of CO2 emission allowance, were determined for the particular technologies. The roadmap of the sustainable development of the generation sources in the NPS between 2020 and 2035 was proposed. The results of the calculations and analyses were presented in tables and figure
Go to article

Abstract

The article analyzes the risk factors related to the energy use of alternative fuels from waste. The essence of risk and its impact on economic activity in the area of waste management were discussed. Then, a risk assessment, on the example of waste fractions used for the production of alternative fuel, was carried out. In addition, the benefits for the society and the environment from the processing of alternative fuels for energy purposes, including, among others: reducing the cost of waste disposal, limiting the negative impact on water, soil and air, reducing the amount of waste deposited, acquisition of land; reduction of the greenhouse effect, facilitating the recycling of other fractions, recovery of electricity and heat, and saving conventional energy carriers, were determined. The analysis of risk factors is carried out separately for plants processing waste for alternative fuel production and plants producing energy from this type of fuel. Waste processing plants should pay attention to investment, market (price, interest rate, and currency), business climate, political, and legal risks, as well as weather, seasonal, logistic, technological, and loss of profitability or bankruptcy risks. Similar risks are observed in the case of energy companies, as they operate in the same external environment. Moreover, internal risks may be similar; however, the specific nature of the operation of each enterprise should be taken into account. Energy companies should pay particular attention to the various types of costs that may threaten the stability of operation, especially in the case of regulated energy prices. The risk associated with the inadequate quality of the supplied and stored fuels is important. This risk may disrupt the technological process and reduce the plant’s operational efficiency. Heating plants and combined heat and power plants should also not underestimate the non-catastrophic weather risk, which may lead to a decrease in heat demand and a reduction in business revenues. A comprehensive approach to risk should protect enterprises against possible losses due to various types of threats, including both external and internal threats.
Go to article

This page uses 'cookies'. Learn more