Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The study included bituminous coal seams (30 samples coal from the Bogdanka and Chełm deposits) of the Lublin Formation, the most coal-bearing strata in the best developed and recognized in terms of mining parts of the Lublin Coal Basin in Poland. High phosphorus concentrations in coal of the Lublin Formation were found (1375 g/Mg) as well as P2O5 in coal ash (2.267 wt%). The phosphorus contents in coal and coal ash from the 385 and 391 coal seams in the area of the Lubelski Coal Bogdanka Mine and in the area of its SE neighbor is the highest (max. 2.644 wt. % in coal and 6.055 wt. % of P2O5 in coal ash). It has been shown that mineral matter effectively affects phosphorus contents in coal and coal ash. At the same time, phosphate minerals (probably apatite and crandallite) present in kaolinite aggregates of tonsteins contain the most of phosphorus and have the greatest impact on the average P content in the 382, 385, 387, and 391. The secondary source of phosphorus in these coal seams and main source of phosphorus in these coal deposits that do not contain mineral matter of pyroclastic origin (378, 389, 394) may be clay minerals, which absorbed phosphorus compounds derived from organic matter released during coalification. Phosphorus-rich ash from the combustion of the Lublin Formation coal tend to be environmentally beneficial to the environment and also useful for improving the soil quality. Due to the low degree of coalification and high content of phosphorus in coal, this coals of little use for coking.
Go to article

Abstract

As one of the key techniques in the fully mechanized mining process, equipment selection and matching has a great effect on security, production and efficiency. The selection and matching of fully mechanized mining equipment in thin coal seam are restricted by many factors. In fully mechanized mining (FMM) faced in thin coal seams (TCS), to counter the problems existing in equipment selection, such as many the parameters concerned and low automation, an expert system (ES) of equipment selection for fully mechanized mining longwall face was established. A database for the equipment selection and matching expert system in thin coal seam, fully mechanized mining face has been established. Meanwhile, a decision-making software matching the ES was developed. Based on several real world examples, the reliability and technical risks of the results from the ES was discussed. Compared with the field applications, the shearer selection from the ES is reliable. However, some small deviations existed in the hydraulic support and scraper conveyor selection. Then, the ES was further improved. As a result, equipment selection in fully mechanized mining longwall face called 4301 in the Liangshuijing coal mine was carried out by the improved ES. Equipment selection results of the interface in the improved ES is consistent with the design proposal of the 4301 FMM working face. The reliability of the improved ES can meet the requirements of the engineering. It promotes the intelligent and efficient mining of coal resources in China.
Go to article

Abstract

The technology for gob-side entry retaining in steep coal seams is still in the development stage. The analysis results of the caving structure of main roof, low influence of gateway’s stability because of long filling distance and weak dynamic effect of the gateway, and the low stress redistribution environment indicate that using this technology in steep coal seams has significant advantages. Moreover, to reinforce the waste rock and the soft floor and to better guard against the impact of the waste rock during natural filling, a rock blocking device and grouting reinforcement method were invented, and theoretical calculations result show that the blocking device has high safety factor. In addition, we also developed a set of hydraulic support devices for use in the strengthening support zone. Furthermore, because the retaining gateway was a systematic project, the selection of the size and shape of the gateway cross section and its support method during the initial driving stage is a key step. Thus, first, a section the size of bottom width and roof height of a new gateway was determined to meet any related requirements. Then, according to the cross sections of 75 statistical gateways and the support technique, it chosen a trapezoidal cross section when the dip of the coal seam is 35° < α ≤ 45°, a special and an inclined arch cross section when 45° < α ≤ 55°. Eventually, a support system of bolts and cables combined with steel mesh and steel belts was provided. The support system used optimized material and improved parameters, can enhanced the self-bearing ability of the surrounding coal and rock masses.
Go to article

This page uses 'cookies'. Learn more