Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In this paper, a new Multi-Layer Perceptron Neural Network (MLP NN) classifier is proposed for classifying sonar targets and non-targets from the acoustic backscattered signals. Besides the capabilities of MLP NNs, it uses Back Propagation (BP) and Gradient Descent (GD) for training; therefore, MLP NNs face with not only impertinent classification accuracy but also getting stuck in local minima as well as lowconvergence speed. To lift defections, this study uses Adaptive Best Mass Gravitational Search Algorithm (ABGSA) to train MLP NN. This algorithm develops marginal disadvantage of the GSA using the bestcollected masses within iterations and expediting exploitation phase. To test the proposed classifier, this algorithm along with the GSA, GD, GA, PSO and compound method (PSOGSA) via three datasets in various dimensions will be assessed. Assessed metrics include convergence speed, fail probability in local minimum and classification accuracy. Finally, as a practical application assumed network classifies sonar dataset. This dataset consists of the backscattered echoes from six different objects: four targets and two non-targets. Results indicate that the new classifier proposes better output in terms of aforementioned criteria than whole proposed benchmarks.
Go to article

Abstract

The work proposes a new method for vehicle classification, which allows treating vehicles uniformly at the stage of defining the vehicle classes, as well as during the classification itself and the assessment of its correctness. The sole source of information about a vehicle is its magnetic signature normalised with respect to the amplitude and duration. The proposed method allows defining a large number (even several thousand) of classes comprising vehicles whose magnetic signatures are similar according to the assumed criterion with precisely determined degree of similarity. The decision about the degree of similarity and, consequently, about the number of classes, is taken by a user depending on the classification purpose. An additional advantage of the proposed solution is the automated defining of vehicle classes for the given degree of similarity between signatures determined by a user. Thus the human factor, which plays a significant role in currently used methods, has been removed from the classification process at the stage of defining vehicle classes. The efficiency of the proposed approach to the vehicle classification problem was demonstrated on the basis of a large set of experimental data.
Go to article

This page uses 'cookies'. Learn more