Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Analytical relations, describing the electrical fields of cylindrical piezoceramic radiators with circular polarization as a member of the cylindrical systems with the baffle in the inner cavity, using the related fields method in multiply connected regions were obtained. Comparative analysis of the results of numerical experiments performed on the frequency characteristics of the electric field of the radiating systems for different modes of radiation allow to establish a number of subtle effects of the formation of the electric field of radiators.
Go to article

Abstract

Compact radiators with circular polarization are important components of modern mobile communication systems. Their design is a challenging process which requires maintaining simultaneous control over several performance figures but also the structure size. In this work, a novel design framework for multi-stage constrained miniaturization of antennas with circular polarization is presented. The method involves se- quential optimization of the radiator in respect of selected performance figures and, eventually, the size. Optimizations are performed with iteratively increased number of design constraints. Numerical efficiency of the method is ensured using a fast local-search algorithm embedded in a trust-region framework. The proposed design framework is demonstrated using a compact planar radiator with circular polarization. The optimized antenna is characterized by a small size of 271 mm2 with 37% and 47% bandwidths in respect of 10 dB return loss and 3 dB axial ratio, respectively. The structure is benchmarked against the state-of-the-art circular polarization antennas. Numerical results are confirmed by measurements of the fabricated antenna prototype.
Go to article

This page uses 'cookies'. Learn more