Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

Ultrasonic processing in the cavitation mode is used to produce the composite materials based on the metal matrix and reinforcing particles of micro- and nano-sizes. In such a case, the deagglomeration of aggregates and the uniform distribution of particles are the expected effects. Although the particles can not only fragment in the acoustic field, they also can coagulate, coarsen and precipitate. In this paper, a theoretical study of processes of deagglomeration and coagulation of particles in the liquid metal under ultrasonic treatment is made. The influence of various parameters of ultrasound and dispersion medium on the dynamics of particles in the acoustic field is considered on the basis of the proposed mathematical model. The criterion of leading process (coagulation or deagglomeration) has been proposed. The calculated results are compared with the experimental ones known from the scientific literature.
Go to article

Abstract

Several methods can be applied for analyses of the acoustic field in enclosed rooms namely: wave propagation, geometrical or statistical analysis. The paper presents problems related to application of the boundary elements method to modelling of acoustic field parameters. Experimental and numerical studies have been combined for evaluation of acoustic impedance of the material used for the walls of a model room. The experimental studies have been carried out by implementing a multichannel measuring system inside the constructed model of an industrial room. The measuring system allowed simultaneous measurements of the source parameters - the loudspeaker membrane vibration speed, the acoustic pressure values in reception points located inside the model space as well as phase shifts between signals registered in various reception points. The numerical modelling making use of the acoustic pressure values measured inside the analyzed space allowed determination of requested parameters of the surface at the space boundary.
Go to article

Abstract

In the acoustic fatigue experiment for hypersonic vehicle in simulated harsh service environment on ground, acoustic loads on the surface of test pieces of the vehicle need to be measured. However, for the normal microphones without high temperature resistance ability, the near field sound measurement cannot be achieved. In this work, on the basis of previous researches, an acoustic tubes array is designed to achieve the near field measurement of acoustic loads on the surface of the test piece in the supersonic airflow with high temperature achieved by coherent jet oxygen lance. Firstly, the process of designing this acoustic tubes array is introduced. Secondly, the equality of phase differences at the front and at the end of the tubes is stated and proved using a phase differences test with an acoustic tubes array whose design is presented in this text; therefore, the phase differences of signals acquired by microphones can be directly applied to beamforming algorithm to determine the acoustic load source. Finally, using above mentioned acoustic tubes array, measurement of acoustic load, with and without a test piece in the supersonic airflow made by the coherent jet oxygen lance, is conducted respectively, and the measurements results are analyzed.
Go to article

Abstract

This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ n ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.
Go to article

Abstract

A rigorous analysis of sound radiation by a pulsating sphere forming a resonator together with a semi-spherical cavity is presented. Both hard/soft boundaries are considered, as well as mixed. The problem is solved by dividing the entire region into two subregions, one surrounding the sphere and containing the cavity and the other for the remaining half-space. Continuity conditions are applied to obtain the acoustic pressure. Then the acoustic radiation resistance is calculated both in the near- and far-field. The acoustic radiation reactance is calculated in the impedance approach. The resonance frequencies are determined, for which a significant growth of the sound pressure level is observed as well as the sound field directivity. These rigorous results are presented in the form of highly convergent, accurate and numerically efficient series.
Go to article

Abstract

Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz) can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.
Go to article

Abstract

The primary aim of this research study was to model acoustic conditions of the Courtyard of the Gdańsk University of Technology Main Building, and then to design a sound reinforcement system for this interior. First, results of measurements of the parameters of the acoustic field are presented. Then, the comparison between measured and predicted values using the ODEON program is shown. Collected data indicate a long reverberation time which results in poor speech intelligibility. Then, a thorough analysis is perform to improve the acoustic properties of the model of the interior investigated. On the basis of the improved acoustic model two options of a sound reinforcement system for this interior are proposed, and then analyzed. After applying sound absorbing material it was noted that the predicted speech intelligibility increased from bad/poor rating to good category.
Go to article

Abstract

The linear 3D piezoelasticity theory along with active damping control (ADC) strategy are applied for non-stationary vibroacoustic response suppression of a doubly fluid-loaded functionally graded piezolaminated (FGPM) composite hollow cylinder of infinite length under general time-varying excitations. The control gain parameters are identified and tuned using Genetic Algorithm (GA) with a multi-objective performance index that constrains the key elasto-acoustic system parameters and control voltage. The uncontrolled and controlled time response histories due to a pair of equal and opposite impulsive external point loads are calculated by means of Durbin’s numerical inverse Laplace transform algorithm. Numerical simulations demonstrate the superior (good) performance of the GA-optimized distributed active damping control system in effective attenuation of sound pressure transients radiated into the internal (external) acoustic space for two basic control configurations. Also, some interesting features of the transient fluid-structure interaction control problem are illustrated via proper 2D time domain images and animations of the 3D sound field. Limiting cases are considered and accuracy of the formulation is established with the aid of a commercial finite element package as well as comparisons with the current literature.
Go to article

Abstract

Problems associated with designing silencers are presented. Results of direct tests of silencers for cooperation with systems of axial fans, as well as results of numerical tests of a two stage acoustic silencer, are given. The numerical tests enabled determining the distribution of acoustic field inside the silencer and in the surrounding area. In those tests A sound insertion losses for different variants of installation inside the silencer, as well as for two different types of absorbing material used to fill the silencer walls, were determined. Impact of design features of silencers on effectiveness of noise reduction is described. Also, a technical sketch of a universal silencer with significant noise reduction (DipS = 39:1 dB) which can be successfully used in many ventilation systems is presented
Go to article

This page uses 'cookies'. Learn more