Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Discontinuous coefficients in the Poisson equation lead to the weak discontinuity in the solution, e.g. the gradient in the field quantity exhibits a rapid change across an interface. In the real world, discontinuities are frequently found (cracks, material interfaces, voids, phase-change phenomena) and their mathematical model can be represented by Poisson type equation. In this study, the extended finite element method (XFEM) is used to solve the formulated discontinuous problem. The XFEM solution introduce the discontinuity through nodal enrichment function, and controls it by additional degrees of freedom. This allows one to make the finite element mesh independent of discontinuity location. The quality of the solution depends mainly on the assumed enrichment basis functions. In the paper, a new set of enrichments are proposed in the solution of the Poisson equation with discontinuous coefficients. The global and local error estimates are used in order to assess the quality of the solution. The stability of the solution is investigated using the condition number of the stiffness matrix. The solutions obtained with standard and new enrichment functions are compared and discussed.
Go to article

Abstract

In the paper, the extended finite element method (XFEM) is combined with a recovery procedure in the analysis of the discontinuous Poisson problem. The model considers the weak as well as the strong discontinuity. Computationally efficient low-order finite elements provided good convergence are used. The combination of the XFEM with a recovery procedure allows for optimal convergence rates in the gradient i.e. as the same order as the primary solution. The discontinuity is modelled independently of the finite element mesh using a step-enrichment and level set approach. The results show improved gradient prediction locally for the interface element and globally for the entire domain.
Go to article

Abstract

Nominal strength reduction in cross ply laminates of [0/90]2s is observed in tensile tests of glass fiber composite laminates having central open hole of diameters varying from 2 to 10 mm. This is well known as the size effect. The extended finite element method (XFEM) is implemented to simulate the fracture process and size effect (scale effect) in the glass fiber reinforced polymer laminates weakened by holes or notches. The analysis shows that XFEM results are in good agreement with the experimental results specifying nominal strength and in good agreement with the analytical results based on the cohesive zone model specifying crack opening displacement and the fracture process zone length.
Go to article

This page uses 'cookies'. Learn more