Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Electrical Discharge Machining (EDM) process with copper tool electrode is used to investigate the machining characteristics of AISI D2 tool steel material. The multi-wall carbon nanotube is mixed with dielectric fluids and its end characteristics like surface roughness, fractal dimension and metal removal rate (MRR) are analysed. In this EDM process, regression model is developed to predict surface roughness. The collection of experimental data is by using L9 Orthogonal Array. This study investigates the optimization of EDM machining parameters for AISI D2 Tool steel using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Analysis of variance (ANOVA) and F-test are used to check the validity of the regression model and to determine the significant parameter affecting the surface roughness. Atomic Force Microscope (AFM) is used to capture the machined image at micro size and using spectroscopy software the surface roughness and fractal dimensions are analysed. Later, the parameters are optimized using MINITAB 15 software, and regression equation is compared with the actual measurements of machining process parameters. The developed mathematical model is further coupled with Genetic Algorithm (GA) to determine the optimum conditions leading to the minimum surface roughness value of the workpiece.
Go to article

Abstract

Celem opracowania jest prezentacja możliwości wykorzystania skierowanych liczb rozmytych (OFN) do podejmowania decyzji wielokryterialnych. W pracy przedstawiono przykłady interpretacji OFN, propozycje wykorzystania OFN w rozmytych metodach wielokryterialnych do reprezentacji typu kryterium oraz wyrażeń lingwistycznych. Omówiono rozmyte procedury SAW oraz TOPSIS oparte na OFN, które pozwalają na uwzględnienie niejednoznaczności, nieprecyzyjności oraz opisów werbalnych w ocenie wariantów decyzyjnych. Artykuł ma charakter metodologiczny i może stanowić inspirację do dalszych badań nad zastosowaniem OFN w metodach wielokryterialnych.
Go to article

This page uses 'cookies'. Learn more