Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

In the paper, a procedure for precise and expedited design optimization of unequal power split patch couplers is proposed. Our methodology aims at identifying the coupler dimensions that correspond to the circuit operating at the requested frequency and featuring a required power split. At the same time, the design process is supposed to be computationally efficient. The proposed methodology involves two types of auxiliary models (surrogates): an inverse one, constructed from a set of reference designs optimized for particular power split values, and a forward one which represents the circuit S-parameter gradients as a function of the power split ratio. The inverse model directly yields the values of geometry parameters of the coupler for any required power split, whereas the forward model is used for a post-scaling correction of the circuit characteristics. For the sake of illustration, a 10-GHz circular sector patch coupler is considered. The power split ratio of the structure is re-designed within a wide range of ��6 dB to 0 dB. As demonstrated, precise scaling (with the power split error smaller than 0.02 dB and the operating frequency error not exceeding 0.05 GHz) can be achieved at the cost of less than three full-wave EM simulations of the coupler. Numerical results are validated experimentally.
Go to article

Abstract

This paper presents a robust model free controller (RMFC) for a class of uncertain continuous-time single-input single-output (SISO) minimum-phase nonaffine-in-control systems. Firstly, the existence of an unknown dynamic inversion controller that can achieve control objectives is demonstrated. Afterwards, a fast approximator is designed to estimate as best as possible this dynamic inversion controller. The proposed robust model free controller is an equivalent realization of the designed fast approximator. The perturbation theory and Tikhonov’s theorem are used to analyze the stability of the overall closed-loop system. The performance of the developped controller are verified experimentally in the position control of a pneumatic actuator system.
Go to article

Abstract

This paper considers a method for indirect measuring the vertical displacement of wheels resulting from the road profile, using an inverse parametric data-driven model. Wheel movement is required in variable damping suspension systems, which use an onboard electronic control system that improves ride quality and vehicle handling in typical maneuvres. This paper presents a feasibility study of such an approach which was performed in laboratory conditions. Experimental validation tests were conducted on a setup consisting of a servo-hydraulic test rig equipped with displacement, force and acceleration transducers and a data-acquisition system. The fidelity and adequacy of various parametric SISO model structures were evaluated in the time domain based on correlation coefficient, FPE and AIC criteria. The experimental test results showed that inverse models provide accuracy of inversion, ranging from more than 70% for the ARX model structure to over 90% for the OE model structure.
Go to article

Abstract

In the paper the thermal processes proceeding in the solidifying metal are analyzed. The basic energy equation determining the course of solidification contains the component (source function) controlling the phase change. This component is proportional to the solidification rate ¶ fS/¶ t (fS Î [0, 1], is a temporary and local volumetric fraction of solid state). The value of fS can be found, among others, on the basic of laws determining the nucleation and nuclei growth. This approach leads to the so called micro/macro models (the second generation models). The capacity of internal heat source appearing in the equation concerning the macro scale (solidification and cooling of domain considered) results from the phenomena proceeding in the micro scale (nuclei growth). The function fS can be defined as a product of nuclei density N and single grain volume V (a linear model of crystallization) and this approach is applied in the paper presented. The problem discussed consists in the simultaneous identification of two parameters determining a course of solidification. In particular it is assumed that nuclei density N (micro scale) and volumetric specific heat of metal (macro scale) are unknown. Formulated in this way inverse problem is solved using the least squares criterion and gradient methods. The additional information which allows to identify the unknown parameters results from knowledge of cooling curves at the selected set of points from solidifying metal domain. On the stage of numerical realization the boundary element method is used. In the final part of the paper the examples of computations are presented.
Go to article

Abstract

The aim of this paper is analysis of the possibility of determining the internal structure of the fibrous composite material by estimating its thermal diffusivity. A thermal diffusivity of the composite material was determined by applying inverse heat conduction method and measurement data. The idea of the proposed method depends on measuring the timedependent temperature distribution at selected points of the sample and identification of the thermal diffusivity by solving a transient inverse heat conduction problem. The investigated system which was used for the identification of thermal parameters consists of two cylindrical samples, in which transient temperature field is forced by the electric heater located between them. The temperature response of the system is measured in the chosen point of sample. One dimensional discrete mathematical model of the transient heat conduction within the investigated sample has been formulated based on the control volume method. The optimal dynamic filtration method as solution of the inverse problem has been applied to identify unknown diffusivity of multi-layered fibrous composite material. Next using this thermal diffusivity of the composite material its internal structure was determined. The chosen results have been presented in the paper.
Go to article

Abstract

The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.
Go to article

This page uses 'cookies'. Learn more