Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The results of mechanical reclamation of waste moulding sands with furfuryl resin and activators of new generation are presented. The aim of the research described in this study was to determine what effect the addition of reclaim obtained in the process of dry mechanical reclamation could have on the properties of furan sands. The sand supplied by one of the domestic foundries was after the initial reclamation subjected to a two-step proper reclamation process. The following tests were carried out on the obtained reclaim: pH, S and N content, loss on ignition and comprehensive sieve analysis. The obtained reclaim was next used as a component of moulding sands with furfuryl resin, wherein it formed 50% and 80% of the base moulding material, respectively. The strength properties of the ready sand mixtures (bending strength Rg u and tensile strength Rm u ) were determined after the hardening time of 0.5, 1, 2, 4 and 24 hours.
Go to article

Abstract

Growing emission requirements are forcing the foundry industry to seek new, more environmentally friendly solutions. One of the solutions may be the technologies of preparing moulding and core sands using organic biodegradable materials as binders. However, not only environmental requirements grow but also those related to the technological properties of moulding sand. Advancing automation and mechanization of the foundry industry brings new challenges related to the moulding sands. Low elasticity may cause defects during assembly of cores or moulds by the manipulators. The paper presents the study of flexibility in the room temperature according to new method and resistance to thermal deformation of selfhardening moulding sands with furfuryl resin, containing biodegradable material PCL. The task of the new additive is to reduce the moulding sands harmfulness to the environment and increase its flexibility in the room temperature. The impact of the additive and the effect of the amount of binder on the properties of mentioned moulding sands were analysed. Studies have shown that the use of 5% of PCL does not change the nature of the thermal deformation curve, improves the bending strength of tested moulding mixtures and increases their flexibility at room temperature.
Go to article

Abstract

The paper presents the impact of biodegradable material - polycaprolactone (PCL) on selected properties of moulding sands. A self-hardening moulding sands with phenol-furfuryl resin, which is widely used in foundry practice, and an environmentally friendly self-hardening moulding sand with hydrated sodium silicate where chosen for testing. The purpose of the new additive in the case of synthetic resin moulding sands is to reduce their harmfulness to the environment and to increase their “elasticity” at ambient temperature. In the case of moulding sands with environmentally friendly hydrated sodium silicate binder, the task of the new additive is to increase the elasticity of the tested samples while preserving their ecological character. Studies have shown that the use of 5% PCL in moulding sand increases their flexibility at ambient temperature, both with organic and inorganic binders. The influence of the new additive on the deformation of the moulding sands at elevated temperatures has also been demonstrated.
Go to article

This page uses 'cookies'. Learn more