Search results

Filters

  • Journals

Search results

Number of results: 1
items per page: 25 50 75
Sort by:

Abstract

An innovative method for determining the structural zones in the large static steel ingots has been described. It is based on the mathematical interpretation of some functions obtained due to simulation of temperature field and thermal gradient field for solidifying massive ingot. The method is associated with the extrema of an analyzed function and with its points of inflection. Particularly, the CET transformation is predicted as a time-consuming transition from the columnar- into equiaxed structure. The equations dealing with heat transfer balance for the continuous casting are presented and used for the simulation of temperature field in the solidifying virtual static brass ingot. The developed method for the prediction of structural zones formation is applied to determine these zones in the solidifying brass static ingot. Some differences / similarities between structure formation during solidification of the steel static ingot and virtual brass static ingot are studied. The developed method allows to predict the following structural zones: fine columnar grains zone, (FC), columnar grains zone, (C), equiaxed grains zone, (E). The FCCT-transformation and CET-transformation are forecast as sharp transitions of the analyzed structures. Similarities between steel static ingot morphology and that predicted for the virtual brass static ingot are described.
Go to article

This page uses 'cookies'. Learn more