Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This study investigates cadmium (Cd) accumulation in the plant leaves of juglans regia (walnut) and cydonia oblanga (quince) trees related to traffic emissions on the highway roadside. The plant leaf samples were collected from 20 sites on the D-100 Highway roadside and washed with deionized water before analyzed. Determination of Cd was carried out using an inductively-coupled plasma-mass spectrometer after microwave digestion of the samples. Cd concentration on the plant leaves was found to be between 0.04–0.11 mg/kg. In order to determine the traffic-based emissions, vehicles were counted and an emission inventory was prepared. 0.18 tons of Cd was found to be delivered into the atmosphere every day. Cd accumulation depends on traffic density because there were no residential area and industrial plants. The distribution of Cd accumulation caused by traffic emissions was mapped by using a geographic information system (GIS). The maps showed that the Cd accumulation was high in the areas near the highway and then gradually decreased by moving away from the highway.
Go to article

Abstract

This article presents data on the anthropogenic air emissions of selected substances (CO2, SO2, total suspended particles (TSP), dioxins and furans (PCDD/F), Pb and Cd) subject to reporting under the Climate Convention (UNFCCC) or the Convention on Long-range Transboundary Air Pollution (UNECE CLRTAP). It also presents the national emissions of these substances in 2014 by the major source categories and defines the share of metal production in these emissions. Analysis is based on national emission inventory reports. Most important source of air emission in case of CO2 and SO2 is 1.A.1 Energy industries category. TSP and PCDD/F are emitted mainly from fuel combustion in small sources (i.a. households). Emission of heavy metals (Pb and Cd) is connected mostly with 1.A.2. Manufacturing industries and construction category. Metallurgy is significant source of emission only for lead and cadmium from among all considered substances. The shares of particular sectors in the national emissions of given pollutants are important, in view of the possible reduction measures and the determination in which industries they could bring about tangible results.
Go to article

Abstract

The paper investigates the air quality in the urban area of Warsaw, Poland. Calculations are carried out using the emissions and meteorological data from the year 2012. The modeling tool is the regional CALMET/CALPUFF system, which is used to link the emission sources with the distributions of the annual mean concentrations. Several types of polluting species that characterize the urban atmospheric environment, like PM10, PM2.5, NOx, SO2, Pb, B(a)P, are included in the analysis. The goal of the analysis is to identify the most polluted districts and polluting compounds there, to check where the concentration limits of particular pollutants are exceeded. Then, emission sources (or emission categories) which are mainly responsible for violation of air quality standards and increase the adverse health effects, are identified. The modeling results show how the major emission sources – the energy sector, industry, traffic and the municipal sector – relate to the concentrations calculated in receptor points, including the contribution of the transboundary inflow. The results allow to identify districts where the concentration limits are exceeded and action plans are needed. A quantitative source apportionment shows the emission sources which are mainly responsible for the violation of air quality standards. It is shown that the road transport and the municipal sector are the emission classes which substantially affect air quality in Warsaw. Also transboundary inflow contributes highly to concentrations of some pollutants. The results presented can be of use in analyzing emission reduction policies for the city, as a part of an integrated modeling system.
Go to article

This page uses 'cookies'. Learn more