Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Extremely intense development of civilization requires from foundry casting technologies very high quality and not expensive castings. In the foundries, there are many treatments that allow increasing of the final properties of produced castings such as refining, modification, heat treatment, etc. One of the methods of increasing the quality of the casting by removing inclusions from the liquid alloy is filtration. The use of ceramic-carbon foam filters in filtration process is still analysed phenomenon that allows improving the final properties of castings. A modern method of research, testing and synthesis of innovative chemical compositions allows improving the properties of such filters. In the paper the evaluation of application properties of developed ceramic-carbon bonded foam filters is presented. The quality of the foam filters is evaluated by Computer Tomography and foundry trials in pouring of liquid metal in test molds. Additionally computer simulations were made to visualize the flow characteristics in the foam filter. The analysed filters are the result of the research work of Foundry Research Institute and the Institute of Ceramics and Building Materials, Refractory Materials Department in Gliwice.
Go to article

Abstract

During four Polish Geodynamical Expeditions to West Antarctica between 1979 and 1991, seismic measurements were made along 21 deep refraction profiles in the Bransfield Strait and along the coastal area of Antarctic Peninsula using explosion sources. Recordings were made by 16 land stations and 8 ocean bottom seismometers. Good quality recordings were obtained up to about 250 km distance. This allowed a detailed study of the seismic wave field and crustal structure. Three-dimensional tomographic inversion was carried out using first arriv­als from the complete data set including off-line recordings. As a result, we obtained a 3-D model of the P-wave velocity distribution in the study area. In the area adjacent to the Antarctic Peninsula coast, sedimentary cover of 0.2 to 3 km thickness was found, whereas in the shelf area and in the Bransfield Strait sedimentary basins with thickness from 5 to 8 km were observed. In the Bransfield Strait a high velocity body with Vp > 7.5 km/s was found at 12 km depth. The use of the off-line data allowed for determination of the horizontal extent of the body. The thickness of the crust varies from more than 35-40 km in the coastal area south of the Hero Fracture Zone to 30-35 km in the area of Bransfield Strait and South Shetland Islands and about 12 km in the Pacific Ocean NW of South Shetland Islands.
Go to article

Abstract

In this paper methods and their examination results for automatic segmentation and parameterization of vessels based on spectral domain optical coherence tomography (SD-OCT) of the retina are presented. We present three strategies for morphologic image processing of a fundus image reconstructed from OCT scans. A specificity of initial image processing for fundus reconstruction is analysed. Then, the parameterization step is performed based on the vessels segmented with the proposed algorithm. The influence of various methods on the vessel segmentation and fully automatic vessel measurement is analysed. Experiments were carried out with a set of 3D OCT scans obtained from 24 eyes (12 healthy volunteers) with the use of an Avanti RTvue OCT device. The results of automatic vessel segmentation were numerically compared with those prepared manually by the medical doctor experts.
Go to article

Abstract

The paper presents the development procedures for both virtual 3D-CAD and material models of fractured segments of human spine formulated with the use of computer tomography (CT) and rapid prototyping (RP) technique. The research is a part of the project within the framework of which a database is developed, comprising both 3D-CAD and material models of segments of thoracic-lumbar spine in which one vertebrae is subjected to compressive fracture for a selected type of clinical cases. The project is devoted to relocation and stabilisation procedures of fractured vertebrae made with the use of ligamentotaxis method. The paper presents models developed for five patients and, for comparison purposes, one for a normal spine. The RP material models have been built basing on the corresponding 3D-CAD ones with the use of fused deposition modelling (FDM) technology. 3D imaging of spine segments in terms of 3D-CAD and material models allows for the analysis of bone structures, classification of clinical cases and provides the surgeons with the data helpful in choosing the proper way of treatment. The application of the developed models to numerical and experimental simulations of relocation procedure of fractured vertebra is planned.
Go to article

Abstract

The main scientific goal of this work is the presentation of the role of selected geophysical methods (Ground-Penetrating Radar GPR and Electrical Resistivity Tomography ERT) to identify water escape zones from retention reservoirs. The paper proposes a methodology of geophysical investigations for the identification of water escape zones from a retention fresh water lake (low mineralised water). The study was performed in a lake reservoir in Upper Silesia. Since a number of years the administrators of the lake have observed a decreasing water level, a phenomenon that is not related to the exploitation of the object. The analysed retention lake has a maximal depth between 6 and 10 m, depending on the season. It is located on Triassic carbonate rocks of the Muschelkalk facies. Geophysical surveys included measurements on the water surface using ground penetration radar (GPR) and electrical resistivity tomography (ERT) methods. The measurements were performed from watercrafts made of non-metal materials. The prospection reached a depth of about 1 to 5 m below the reservoir bottom. Due to large difficulties of conducting investigations in the lake, a fragment with an area of about 5,300 m 2, where service activities and sealing works were already commenced, was selected for the geophysical survey. The scope of this work was: (1) field geophysical research (Ground-Penetrating Radar GPR and Electrical Resistivity Tomography ERT with geodesic service), (2) processing of the obtained geophysical research results, (3) modelling of GPR and ERT anomalies on a fractured water reservoir bottom, and (4) interpretation of the obtained results based on the modelled geophysical anomalies. The geophysical surveys allowed for distinguishing a zone with anomalous physical parameters in the area of the analysed part of the retention lake. ERT surveys have shown that the water escape zone from the reservoir was characterised by significantly decreased electrical resistivities. Diffraction hyperboles and a zone of wave attenuation were observed on the GPR images in the lake bottom within the water escape zone indicating cracks in the bottom of the water reservoir. The proposed methodology of geophysical surveys seems effective in solving untypical issues such as measurements on the water surface.
Go to article

This page uses 'cookies'. Learn more