Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:

Abstract

Introduction of polymers into the cement composites improves same of the properties of concretes and mortars. Therefore, the polymer-cement composites are successfully used in construction. The model of microstructure formation in cement composites modified with thermoplastic polymer (pre-mix modifiers) has already been developed and successfully implemented. However, the formation of microstructure in the case of epoxy-cement composites (containing post-mix modifier) demonstrates same peculiarities which should be taken into account when modelling the process. The microstructure of epoxy-cement composites and its formation is discussed in the paper. The model is offered, formulated on the basis of the microscopic observations and results of testing.
Go to article

Abstract

Recycling construction and demolition waste not only reduces project costs; and saves natural resources, but also solves the environmental threat caused by construction waste disposal. In this paper, C25 waste road concrete is used as an experimental material, the uniaxial compression strength and tensile splitting strength of C25 RAC whose coarse aggregate replacement rate is 0%, 25%, 50%, 75%, and 100% are tested under the condition that the water-to-cement ratio is 0.47, 0.55 and 0.61. The results show: (1) the uniaxial compression strength and tensile splitting strength decrease with the increase of RAC; (2) for concrete with the same water-to-cement ratio, when the coarse aggregate replacement rate changes from 0% to 50%, the uniaxial compression strength and tensile splitting strength of RAC changes slightly. When the coarse aggregate replacement rate changes from 50% to 100%, the uniaxial compression strength and tensile splitting strength of RAC decreases rapidly
Go to article

Abstract

The organic carbon (OC)-rich, black shale succession of the Middle Triassic Bravaisberget Formation in Spitsbergen contains scattered dolomite-ankerite cement in coarser-grained beds and intervals. This cement shows growth-related compositional trend from non-ferroan dolomite (0–5 mol % FeCO3) through ferroan dolomite (5–10 mol % FeCO3) to ankerite (10–20 mol % FeCO3, up to 1.7 mol % MnCO3) that is manifested by zoned nature of composite carbonate crystals. The d13C (-7.3‰ to -1.8‰ VPDB) and d18O (-9.4‰ to -6.0‰ VPDB) values are typical for burial cements originated from mixed inorganic and organic carbonate sources. The dolomite-ankerite cement formed over a range of diagenetic and burial environments, from early post-sulphidic to early catagenic. It reflects evolution of intraformational, compaction-derived marine fluids that was affected by dissolution of biogenic carbonate, clay mineral and iron oxide transformations, and thermal decomposition of organic carbon (decarboxylation of organic acids, kerogen breakdown). These processes operated during Late Triassic and post-Triassic burial history over a temperature range from approx. 40°C to more than 100°C, and contributed to the final stage of cementation of the primary pore space of siltstone and sandstone beds and intervals in the OC-rich succession.
Go to article

Abstract

The main energy source in Poland is still hard coal and lignite. The coal combustion process produces large quantities of by-products, e.g. fly ashes, slag furnace and harmful chemical gases (CO2, NOx, sulfur compounds) which enter the atmosphere. Fly ashes, due to their being fine grained (cement-like), chemical and phase compound and reactivity, have also been widely used in various technological solutions e.g. in the production of ordinary cement, hydro-technical cement and the new generation of cements. The adequate amount of fly ashes additive has a positive effect on fresh and hardened cement slurry properties. What is more, it allows for the pro-ecological and economic production of cement mix The exploitation of natural resources is connected with performance mining excavations at different depths. After a certain period of time, those voids break down which, in turn, leads to the slip of upper layers and the so-called landslides forming on the surface. This situation imposes the necessity of basis and sealing rock mass reinforcement. To minimize the risk connected to geotechnical problems on the mining areas, there is a need to use engineering solutions which could improve soil bearing in a universal, economical and efficient way. This leads to the development of new cement slurry recipes used during geoengineering works, especially in the mining areas. Moreover, economic requirements are forcing engineers to use less expensive technical and technological solutions simultaneously maintaining strength properties. An example of such a solution is to use suitable additives to cement slurry which could reduce the total unit cost of the treatment.
Go to article

Abstract

In the article problems related to human labor and factors affecting the increasing use of industrial robots are discussed. Since human factors affect the production processes stability, robots are preferred to apply. The application of robots is characterized by higher performance and reliability comparing to human labor. The problem is how to determine the real difference in work efficiency between human operator and robot. The aim of the study is to develop a method that allows clearly definition of productivity growth associated with the replacement of human labor by industrial robots. Another aim of the paper is how to model robotized and manual operated workstation in a computer simulation software. Analysis of the productivity and reliability of the hydraulic press workstation operated by the human operator or an industrial robot, are presented. Simulation models have been developed taking into account the availability and reliability of the machine, operator and robot. We apply OEE (Overall Equipment Effectiveness) indicator to present how availability and reliability parameters influence over performance of the workstation, in the longer time. Simplified financial analysis is presented considering different labor costs in EU countries.
Go to article

Abstract

The production of thin-walled castings with wall thickness in the range of 1.5 to 3 mm and below requires the development of insulation moulding sands and/or core materials. The test has been taken to develop these kind of materials. The study included a description of their thermophysical properties. Authors described problems related to the heat flow in the casting-mould system, i.e. mathematically described the main dependence of heat give-up during crystallization of the casting. The influence of the content of polyglicol on the thermophysical properties of the mould with gypsum and cement binder was examined. Using the ATD method determined were the increments ΔT1 and ΔT2 describing the temperature changes in the mould during crystallization of hypoeutectic alloy of AlSi6 and the temperature difference between casting material and mould during the crystallization. In the considered range of technological parameters a description of the heat flow kinetics was given.
Go to article

Abstract

The cement production process is associated with the emission of dust. These are mainly CKD (cement kiln dust) and BPD (by-pass dust), classified as wastes from group 10 – Wastes from thermal processes, subgroups 10 and 13 – wastes from manufacture of cement, lime and plaster and articles and products made from them. Cement kiln dust is a waste of variable composition and properties, which makes it a difficult material to recover. The main directions of recovery presented in the world literature indicate the use of dust from cement kilns in cement, mortar and concrete production, the production of bricks and in order to improve soil quality and wastewater treatment. Factors affecting chemical and phase compositions of dust from cement kilns are the reason why each waste should be analyzed individually. The paper presents the results of the analysis of the cement kiln dust after dedusting cement kilns and two bypass dusts. Analysis of the chemical composition has shown significant concentrations of chlorine, potassium and calcium in all wastes. The content of: Si, S, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Zr, Pb, and Bi has also been confirmed. The analyzed dusts were characterized by the presence of carbonates (calcite, dolomite, and arcanite), quartz, alite, belite, sylvine, anhydrite, and portlandite in their phase composition. The leachates which were characterized by an alkaline reaction. In terms of leachability, high concentrations of chlorine ions in the analyzed dust leachates were confirmed, which significantly limits their use.
Go to article

Abstract

In this research reactive powder concrete (RPC) was prepared using sand from North Sinai. The mechanical properties of locally cast RPC were investigated and evaluated by studying the effects of using different cement and silica fume contents and new steel fi bers’ aspect ratios as reinforce-ment for RPC. Specimens’ preparation, curing regimes and testing procedures to evaluate the com-pressive strength, the modulus of elasticity, the indirect tensile strength and the fl exural strength were discussed. A compressive strength of 154.5 MPa, indirect tensile strength of 11.98 MPa, mod-ulus of elasticity of 45.1 GPa and fl exural strength of 30.26 MPa have been achieved for reinforced RPC contains 800 kg/m³ cement content and silica fume content 30% of cement weight. The test results showed some improvements by increasing cement and silica fume contentsas well as adding steel fi bers on the compressive strength, modulus of elasticity and indirect tensile strength.
Go to article

Abstract

Currently, a worldwide dynamic rise of interest in using soil as a construction material can be observed. This trend is evident in the rapid rise of the amount of standards that deal with soil techniques. In 2012 the number of standards was larger by one third than five years prior. To create a full standardization of the rammed earth technique it is necessary to take into account the diversity of used soil and stabilizing additives. The proportion of the components, the process of element production and the research methods must also be made uniform. The article describes the results of research on the compressive strength of rammed earth samples that differed from each other with regards to the type of loam used for the mixture and the amount of the stabilizer. The stabilizer used was Portland cement CEM I 42.5R. The research and the analysis of the results were based on foreign publications, the New Zealand standard NZS 4298:1998, the American Standard NMAC14.7.4 and archival Polish Standards from the 1960’s that dealt with earth material.
Go to article

Abstract

The presented paper reports data from malacological and pedological studies carried out at sites representing diverse biotopes (beech wood, coniferous forest, and meadow) located 2 km away from the Dyckerhoff Cement Plant in Sitkówka-Nowiny in 1992 and in 2008–2009. The studies aimed to determine physicochemical properties of soils exposed to cement and limestone dust emission and to identify composition of snail communities inhabiting three different biotopes in relation to physicochemical properties of soils, and to grasp the dynamics of the alkalization-dependent changes in physicochemical properties of soils and their impact on the composition and ecological structure of malacofauna.
Go to article

This page uses 'cookies'. Learn more