Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:

Abstract

Ablation casting is a technological process in which the increased cooling rate causes microstructure refinement, resulting in improved mechanical properties of the final product. This technology is particularly suitable for the manufacture of castings with intricate shapes and thin walls. Currently, the ablation casting process is not used in the Polish industry. This article presents the results of strength tests carried out on moulding sands based on hydrated sodium silicate hardened in the Floster S technology, intended for ablation casting of the AlSi7Mg (AK7) aluminium alloy. When testing the bending and tensile strengths of sands, parameters such as binder and hardener content were taken into account. The sand mixtures were tested after 24h hardening at room temperature. The next stage of the study describes the course of the ablation casting process, starting with the manufacture of foundry mould from the selected moulding mixture and ending in tests carried out on the ready casting to check the surface quality, structure and mechanical properties. The results were compared with the parallel results obtained on a casting gravity poured into the sand mould and solidifying in a traditional way at ambient temperature.
Go to article

Abstract

Casting quality depends on many factors including the quality of the input materials, technology, material securing and last but not least, the mould into which the casting is casted. By pouring into a single-shot mould, based mainly on 1st generation binders, is is a very important factor. Basically, a bentonite mixture represents either a three- or four-component system, but each component of the system is a heterogeneous substance. This heterogeneity punctuates mainly a non-stationary heat field, presented throughout the whole process of the casting production. The most important component is a binder and in the case of first generation binders mostly bentonites are used - clays that contain minimum of 80% of montmorillonite
Go to article

Abstract

The article presents an analysis of the applicability of the Replicast CS process as an alternative to the investment casting process, considered in terms of the dimensional accuracy of castings. Ceramic shell moulds were based on the Ekosil binder and a wide range of ceramic materials, such as crystalline quartz, fused silica, aluminosilicates and zirconium silicate. The linear dimensions were measured with a Zeiss UMC 550 machine that allowed reducing to minimum the measurement uncertainty.
Go to article

Abstract

The chosen, typical causes of quality defects of cast-iron „alphin” rings embedded in aluminum cast are being presented in this paper. Diffusive joint of those inserts with the pistons casts is being used, due to extreme work conditions of destructive influence of the fuel mix and variable thermo-mechanical loads, which reign in the combustion motor working chamber.
Go to article

Abstract

Topic of this work is to compare metalurgy of cast irons poured into sand moulds and into shell molds at IEG Jihlava company and from it following differencies in structures of thin- and thick-walled castings. This work is dealing with investigation and experimental measurement on surfaces and sections suitable thin- and thick-walled investment castings at IEG Jihlava. Cast irons with flake graphite (grey cast iron) and cast irons with spheroidal graphite (ductile cast iron). Both mechanical and physical properties are determined using calculations from as measured values of wall thicknesses L and Lu, Vickers hardness and remanent magnetism. Measurement results are discussed, findings are formulated and methods for castings metallurgical quality improvement are recommended finally
Go to article

Abstract

Studies were conducted on a zinc coating produced on the surface of ductile iron grade EN-GJS-500-7 to determine the eutectic grain effect. For this purpose, castings with a wall thickness of 5 to 30 mm were made and the resulting structure was examined. To obtain a homogeneous metal matrix, samples were subjected to a ferritising annealing treatment. To enlarge the reaction surface, the top layer was removed from casting by machining. Then hot dip galvanising treatment was performed at 450°C to capture the kinetics of growth of the zinc coating (in the period from 60 to 600 seconds). Analysing the test results it was found that within the same time of hot dip galvanising, the differences in the resulting zinc coating thickness on samples taken from castings with different wall cross-sections were small but could, particularly for shorter times of treatment, reduce the continuity of the alloyed layer of the zinc coating.
Go to article

Abstract

In this work, T-shaped mould design was used to generate hot spot and the effect of Sr and B on the hot tearing susceptibility of A356 was investigated. The die temperature was kept at 250o C and the pouring was carried out at 740o C. The amonut of Sr and B additions were 30 and 10 ppm, respectively. One of the most important defects that may exist in cast aluminium is the presence of bifilms. Bifilms can form by the surface turbulence of liquid metal. During such an action, two unbonded surfaces of oxides fold over each other which act as a crack. Therefore, this defect cause many problems in the cast part. In this work, it was found that bifilms have significant effect over the hot tearing of A356 alloy. When the alloy solidifies directionally, the structure consists of elongated dendritic structure. In the absence of equiaxed dendrites, the growing tips of the dendrites pushed the bifilms to open up and unravel. Thus, leading to enlarged surface of oxide to become more harmful. In this case, it was found that these bifilms initiate hot tearing.
Go to article

Abstract

The formation of oxide film on the surface of aluminium melts, i.e. bifilms, are known to be detrimental when they are incorporated into the cast part. These defects causes premature fractures under stress, or aid porosity formation. In this work, Al-12 Si alloy was used to cast a step mould under two conditions: as-received and degassed. In addition, 10 ppi filters were used in the mould in order to prevent bifilm intrusion into the cast part. Reduced pressure test samples were collected for bifilm index measurements. Samples were machined into standard bars for tensile testing. It was found that there was a good agreement with the bifilm index and mechanical properties.
Go to article

Abstract

The study presents the results of the investigations of the effect of Cu, Ni, Cr, V, Mo and W alloy additions on the microstructure and mechanical properties of the AlSi7Mg0.3 alloy. The examinations were performed within a project the aim of which is to elaborate an experimental and industrial technology of producing elements of machines and devices complex in their construction, made of aluminium alloys by the method of precision investment casting. It was demonstrated that a proper combination of alloy additions causes the crystallization of complex intermetallic phases in the silumin, shortens the SDAS and improves the strength properties: Rm, Rp0.2,HB hardness. Elevating these properties reduces At, which, in consequence, lowers the quality index Q of the alloy of the obtained casts. Experimental casts were made in ceramic moulds preliminarily heated to 160 °C, into which the AlSi7Mg0.3 alloy with the additions was cast, followed by its cooling at ambient temperature. With the purpose of increasing the value of the quality index Q, it is recommended that the process of alloy cooling in the ceramic mould be intensified and/or a thermal treatment of the casts be performed (ageing)(T6).
Go to article

Abstract

The FMEA (Failure Mode and Effects Analysis) method consists in analysis of failure modes and evaluation of their effects based on determination of cause-effect relationships for formation of possible product or process defects. Identified irregularities which occur during the production process of piston castings for internal combustion engines were ordered according to their failure rates, and using Pareto-Lorenz analysis, their per cent and cumulated shares were determined. The assessments of risk of defects occurrence and their causes were carried out in ten-point scale of integers, while taking three following criteria into account: significance of effects of the defect occurrence (LPZ), defect occurrence probability (LPW) and detectability of the defect found (LPO). A product of these quantities constituted the risk score index connected with a failure occurrence (a so-called “priority number,” LPR). Based on the observations of the piston casting process and on the knowledge of production supervisors, a set of corrective actions was developed and the FMEA was carried out again. It was shown that the proposed improvements reduce the risk of occurrence of process failures significantly, translating into a decrease in defects and irregularities during the production of piston castings for internal combustion engines.
Go to article

Abstract

One way to ensure the required technical characteristics of castings is the strict control of production parameters affecting the quality of the finished products. If the production process is improperly configured, the resulting defects in castings lead to huge losses. Therefore, from the point of view of economics, it is advisable to use the methods of computational intelligence in the field of quality assurance and adjustment of parameters of future production. At the same time, the development of knowledge in the field of metallurgy, aimed to raise the technical level and efficiency of the manufacture of foundry products, should be followed by the development of information systems to support production processes in order to improve their effectiveness and compliance with the increasingly more stringent requirements of ergonomics, occupational safety, environmental protection and quality. This article is a presentation of artificial intelligence methods used in practical applications related to quality assurance. The problem of control of the production process involves the use of tools such as the induction of decision trees, fuzzy logic, rough set theory, artificial neural networks or case-based reasoning.
Go to article

Abstract

The paper deals with problem of optimal used automatic workplace for HPDC technology - mainly from aspects of operations sequence, efficiency of work cycle and planning of using and servicing of HPDC casting machine. Presented are possible ways to analyse automatic units for HPDC. The experimental part was focused on the rationalization of the current work cycle time for die casting of aluminium alloy. The working place was described in detail in the project. The measurements were carried out in detail with the help of charts and graphs mapped cycle of casting workplace. Other parameters and settings have been identified. The proposals for improvements were made after the first measurements and these improvements were subsequently verified. The main actions were mainly software modifications of casting center. It is for the reason that today's sophisticated workplaces have the option of a relatively wide range of modifications without any physical harm to machines themselves. It is possible to change settings or unlock some unsatisfactory parameters.
Go to article

Abstract

The purpose of this paper was testing suitability of the time-series analysis for quality control of the continuous steel casting process in production conditions. The analysis was carried out on industrial data collected in one of Polish steel plants. The production data concerned defective fractions of billets obtained in the process. The procedure of the industrial data preparation is presented. The computations for the time-series analysis were carried out in two ways, both using the authors’ own software. The first one, applied to the real numbers type of the data has a wide range of capabilities, including not only prediction of the future values but also detection of important periodicity in data. In the second approach the data were assumed in a binary (categorical) form, i.e. the every heat(melt) was labeled as ‘Good’ or ‘Defective’. The naïve Bayesian classifier was used for predicting the successive values. The most interesting results of the analysis include good prediction accuracies obtained by both methodologies, the crucial influence of the last preceding point on the predicted result for the real data time-series analysis as well as obtaining an information about the type of misclassification for binary data. The possibility of prediction of the future values can be used by engineering or operational staff with an expert knowledge to decrease fraction of defective products by taking appropriate action when the forthcoming period is identified as critical.
Go to article

This page uses 'cookies'. Learn more